Loading...
    • Entwicklerleitfaden
    • API-Referenz
    • MCP
    • Ressourcen
    • Versionshinweise
    Search...
    ⌘K
    Erste Schritte
    Einführung in ClaudeSchnelleinstieg
    Modelle & Preise
    ModellübersichtModell auswählenNeuerungen in Claude 4.5Migration zu Claude 4.5ModellabschreibungenPreise
    Mit Claude erstellen
    FunktionsübersichtMessages API verwendenKontextfensterBest Practices für Prompts
    Fähigkeiten
    Prompt-CachingKontext-BearbeitungErweitertes DenkenAufwandStreaming MessagesBatch-VerarbeitungZitateMehrsprachige UnterstützungToken-ZählungEmbeddingsVisionPDF-UnterstützungFiles APISuchergebnisseStrukturierte Ausgaben
    Tools
    ÜbersichtTool-Nutzung implementierenFeingranulares Tool-StreamingBash-ToolCode-Ausführungs-ToolProgrammatischer Tool-AufrufComputer-Use-ToolText-Editor-ToolWeb-Fetch-ToolWeb-Such-ToolMemory-ToolTool-Such-Tool
    Agent Skills
    ÜbersichtSchnelleinstiegBest PracticesSkills mit der API verwenden
    Agent SDK
    ÜbersichtSchnelleinstiegTypeScript SDKTypeScript V2 (Vorschau)Python SDKMigrationsleitfaden
    MCP in der API
    MCP-ConnectorRemote MCP-Server
    Claude auf Plattformen von Drittanbietern
    Amazon BedrockMicrosoft FoundryVertex AI
    Prompt Engineering
    ÜbersichtPrompt-GeneratorPrompt-Vorlagen verwendenPrompt-VerbessererKlar und direkt seinBeispiele verwenden (Multishot-Prompting)Claude denken lassen (CoT)XML-Tags verwendenClaude eine Rolle geben (System-Prompts)Claudes Antwort vorausfüllenKomplexe Prompts verkettenTipps für langen KontextTipps für erweitertes Denken
    Testen & Evaluieren
    Erfolgskriterien definierenTestfälle entwickelnEvaluierungs-Tool verwendenLatenz reduzieren
    Schutzvorrichtungen verstärken
    Halluzinationen reduzierenAusgabekonsistenz erhöhenJailbreaks abschwächenStreaming-AblehnungenPrompt-Lecks reduzierenClaude im Charakter halten
    Verwaltung und Überwachung
    Admin API ÜbersichtNutzungs- und Kosten-APIClaude Code Analytics API
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    Fähigkeiten

    Vision

    Claudes Vision-Funktionen ermöglichen es, Bilder zu verstehen und zu analysieren, was aufregende Möglichkeiten für multimodale Interaktion eröffnet.

    Diese Anleitung beschreibt, wie man mit Bildern in Claude arbeitet, einschließlich Best Practices, Codebeispiele und Einschränkungen, die zu beachten sind.


    So verwenden Sie Vision

    Nutzen Sie Claudes Vision-Funktionen über:

    • claude.ai. Laden Sie ein Bild wie eine Datei hoch, oder ziehen Sie ein Bild direkt in das Chat-Fenster.
    • Die Console Workbench. Eine Schaltfläche zum Hinzufügen von Bildern erscheint oben rechts in jedem Benutzernachrichtenblock.
    • API-Anfrage. Siehe die Beispiele in dieser Anleitung.

    Bevor Sie hochladen

    Grundlagen und Limits

    Sie können mehrere Bilder in einer einzelnen Anfrage einschließen (bis zu 20 für claude.ai und 100 für API-Anfragen). Claude analysiert alle bereitgestellten Bilder bei der Formulierung seiner Antwort. Dies kann hilfreich sein, um Bilder zu vergleichen oder gegenüberzustellen.

    Wenn Sie ein Bild größer als 8000x8000 px einreichen, wird es abgelehnt. Wenn Sie mehr als 20 Bilder in einer API-Anfrage einreichen, beträgt dieses Limit 2000x2000 px.

    Während die API 100 Bilder pro Anfrage unterstützt, gibt es ein 32-MB-Anfragegrößenlimit für Standard-Endpunkte.

    Bildgröße bewerten

    Für optimale Leistung empfehlen wir, Bilder vor dem Hochladen zu verkleinern, wenn sie zu groß sind. Wenn die lange Kante Ihres Bildes mehr als 1568 Pixel beträgt oder Ihr Bild mehr als ~1.600 Token hat, wird es zunächst herunterskaliert, wobei das Seitenverhältnis beibehalten wird, bis es innerhalb der Größenlimits liegt.

    Wenn Ihr Eingabebild zu groß ist und verkleinert werden muss, erhöht dies die Latenz von time-to-first-token, ohne Ihnen eine zusätzliche Modellleistung zu geben. Sehr kleine Bilder unter 200 Pixeln auf einer beliebigen Kante können die Leistung beeinträchtigen.

    Um time-to-first-token zu verbessern, empfehlen wir, Bilder auf nicht mehr als 1,15 Megapixel zu verkleinern (und innerhalb von 1568 Pixeln in beiden Dimensionen).

    Hier ist eine Tabelle der maximalen Bildgrößen, die von unserer API akzeptiert werden und nicht für gängige Seitenverhältnisse verkleinert werden. Mit Claude Sonnet 4.5 verwenden diese Bilder ungefähr 1.600 Token und kosten etwa 4,80 $/1K Bilder.

    SeitenverhältnisBildgröße
    1:11092x1092 px
    3:4951x1268 px
    2:3896x1344 px
    9:16819x1456 px
    1:2784x1568 px

    Bildkosten berechnen

    Jedes Bild, das Sie in eine Anfrage an Claude einschließen, zählt zu Ihrer Token-Nutzung. Um die ungefähren Kosten zu berechnen, multiplizieren Sie die ungefähre Anzahl der Bild-Token mit dem Pro-Token-Preis des Modells, das Sie verwenden.

    Wenn Ihr Bild nicht verkleinert werden muss, können Sie die Anzahl der verwendeten Token durch diesen Algorithmus schätzen: tokens = (width px * height px)/750

    Hier sind Beispiele für ungefähre Tokenisierung und Kosten für verschiedene Bildgrößen innerhalb der Größenlimits unserer API basierend auf dem Claude Sonnet 4.5 Pro-Token-Preis von 3 $ pro Million Input-Token:

    BildgrößeAnzahl TokenKosten / BildKosten / 1K Bilder
    200x200 px (0,04 Megapixel)~54~0,00016 $~0,16 $
    1000x1000 px (1 Megapixel)~1334~0,004 $~4,00 $
    1092x1092 px (1,19 Megapixel)~1590~0,0048 $~4,80 $

    Bildqualität sicherstellen

    Beachten Sie beim Bereitstellen von Bildern für Claude Folgendes, um die besten Ergebnisse zu erzielen:

    • Bildformat: Verwenden Sie ein unterstütztes Bildformat: JPEG, PNG, GIF oder WebP.
    • Bildklarheit: Stellen Sie sicher, dass Bilder klar sind und nicht zu verschwommen oder pixelig sind.
    • Text: Wenn das Bild wichtigen Text enthält, stellen Sie sicher, dass er lesbar ist und nicht zu klein ist. Vermeiden Sie es, wichtigen visuellen Kontext auszuschneiden, nur um den Text zu vergrößern.

    Prompt-Beispiele

    Viele der Prompting-Techniken, die gut für textbasierte Interaktionen mit Claude funktionieren, können auch auf bildbasierte Prompts angewendet werden.

    Diese Beispiele demonstrieren Best-Practice-Prompt-Strukturen mit Bildern.

    Wie bei der Platzierung von Dokument-Abfragen funktioniert Claude am besten, wenn Bilder vor Text kommen. Bilder, die nach Text platziert oder mit Text vermischt sind, funktionieren immer noch gut, aber wenn Ihr Anwendungsfall es zulässt, empfehlen wir eine Bild-dann-Text- Struktur.

    Über die Prompt-Beispiele

    Die folgenden Beispiele zeigen, wie Sie Claudes Vision-Funktionen mit verschiedenen Programmiersprachen und Ansätzen verwenden. Sie können Bilder an Claude auf drei Arten bereitstellen:

    1. Als base64-codiertes Bild in image Content-Blöcken
    2. Als URL-Referenz zu einem online gehosteten Bild
    3. Mit der Files API (einmal hochladen, mehrfach verwenden)

    Die base64-Beispiel-Prompts verwenden diese Variablen:

        # Für URL-basierte Bilder können Sie die URL direkt in Ihrer JSON-Anfrage verwenden
        
        # Für base64-codierte Bilder müssen Sie das Bild zuerst codieren
        # Beispiel zum Codieren eines Bildes zu base64 in bash:
        BASE64_IMAGE_DATA=$(curl -s "https://upload.wikimedia.org/wikipedia/commons/a/a7/Camponotus_flavomarginatus_ant.jpg" | base64)
        
        # Die codierten Daten können jetzt in Ihren API-Aufrufen verwendet werden

    Nachfolgend finden Sie Beispiele für die Einbeziehung von Bildern in eine Messages API-Anfrage mit base64-codierten Bildern und URL-Referenzen:

    Base64-codiertes Bildbeispiel

    curl https://api.anthropic.com/v1/messages \
      -H "x-api-key: $ANTHROPIC_API_KEY" \
      -H "anthropic-version: 2023-06-01" \
      -H "content-type: application/json" \
      -d '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 1024,
        "messages": [
          {
            "role": "user",
            "content": [
              {
                "type": "image",
                "source": {
                  "type": "base64",
                  "media_type": "image/jpeg",
                  "data": "'"$BASE64_IMAGE_DATA"'"
                }
              },
              {
                "type": "text",
                "text": "Describe this image."
              }
            ]
          }
        ]
      }'

    URL-basiertes Bildbeispiel

    curl https://api.anthropic.com/v1/messages \
      -H "x-api-key: $ANTHROPIC_API_KEY" \
      -H "anthropic-version: 2023-06-01" \
      -H "content-type: application/json" \
      -d '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 1024,
        "messages": [
          {
            "role": "user",
            "content": [
              {
                "type": "image",
                "source": {
                  "type": "url",
                  "url": "https://upload.wikimedia.org/wikipedia/commons/a/a7/Camponotus_flavomarginatus_ant.jpg"
                }
              },
              {
                "type": "text",
                "text": "Describe this image."
              }
            ]
          }
        ]
      }'

    Files API-Bildbeispiel

    Für Bilder, die Sie wiederholt verwenden, oder wenn Sie Codierungsaufwand vermeiden möchten, verwenden Sie die Files API:

    # Laden Sie Ihr Bild zuerst in die Files API hoch
    curl -X POST https://api.anthropic.com/v1/files \
      -H "x-api-key: $ANTHROPIC_API_KEY" \
      -H "anthropic-version: 2023-06-01" \
      -H "anthropic-beta: files-api-2025-04-14" \
      -F "[email protected]"
    
    # Verwenden Sie dann die zurückgegebene file_id in Ihrer Nachricht
    curl https://api.anthropic.com/v1/messages \
      -H "x-api-key: $ANTHROPIC_API_KEY" \
      -H "anthropic-version: 2023-06-01" \
      -H "anthropic-beta: files-api-2025-04-14" \
      -H "content-type: application/json" \
      -d '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 1024,
        "messages": [
          {
            "role": "user",
            "content": [
              {
                "type": "image",
                "source": {
                  "type": "file",
                  "file_id": "file_abc123"
                }
              },
              {
                "type": "text",
                "text": "Describe this image."
              }
            ]
          }
        ]
      }'

    Weitere Codebeispiele und Parameterdetails finden Sie unter Messages API-Beispiele.


    Einschränkungen

    Obwohl Claudes Bildverständnisfähigkeiten hochmodern sind, gibt es einige Einschränkungen zu beachten:

    • Personenerkennung: Claude kann nicht verwendet werden, um Personen in Bildern zu identifizieren (d. h. zu benennen), und wird sich weigern, dies zu tun.
    • Genauigkeit: Claude kann halluzinieren oder Fehler machen, wenn er Bilder mit niedriger Qualität, gedrehte oder sehr kleine Bilder unter 200 Pixeln interpretiert.
    • Räumliches Denken: Claudes Fähigkeiten zum räumlichen Denken sind begrenzt. Es kann bei Aufgaben Schwierigkeiten haben, die präzise Lokalisierung oder Layouts erfordern, wie das Lesen eines analogen Ziffernblatts oder die Beschreibung exakter Positionen von Schachfiguren.
    • Zählen: Claude kann ungefähre Anzahlen von Objekten in einem Bild angeben, ist aber möglicherweise nicht immer präzise genau, besonders bei großen Mengen kleiner Objekte.
    • KI-generierte Bilder: Claude weiß nicht, ob ein Bild KI-generiert ist, und kann falsch liegen, wenn er gefragt wird. Verlassen Sie sich nicht darauf, um gefälschte oder synthetische Bilder zu erkennen.
    • Unangemessene Inhalte: Claude wird unangemessene oder explizite Bilder, die gegen unsere Acceptable Use Policy verstoßen, nicht verarbeiten.
    • Gesundheitsanwendungen: Während Claude allgemeine medizinische Bilder analysieren kann, ist es nicht dafür ausgelegt, komplexe diagnostische Scans wie CTs oder MRTs zu interpretieren. Claudes Ausgaben sollten nicht als Ersatz für professionelle medizinische Beratung oder Diagnose angesehen werden.

    Überprüfen und verifizieren Sie immer sorgfältig Claudes Bildinterpretationen, besonders bei hochriskanten Anwendungsfällen. Verwenden Sie Claude nicht für Aufgaben, die perfekte Präzision erfordern, oder für sensible Bildanalysen ohne menschliche Aufsicht.


    Häufig gestellte Fragen


    Tiefer in Vision eintauchen

    Bereit, mit Bildern mit Claude zu bauen? Hier sind einige hilfreiche Ressourcen:

    • Multimodales Kochbuch: Dieses Kochbuch enthält Tipps zum Einstieg in Bilder und Best-Practice-Techniken, um die höchste Qualitätsleistung mit Bildern zu gewährleisten. Sehen Sie, wie Sie Claude effektiv mit Bildern auffordern können, um Aufgaben wie Interpretation und Analyse von Diagrammen oder Extrahieren von Inhalten aus Formularen auszuführen.
    • API-Referenz: Besuchen Sie unsere Dokumentation für die Messages API, einschließlich Beispiel-API-Aufrufe mit Bildern.

    Wenn Sie weitere Fragen haben, können Sie sich gerne an unser Support-Team wenden. Sie können auch unserer Entwickler-Community beitreten, um sich mit anderen Kreativen zu verbinden und Hilfe von Anthropic-Experten zu erhalten.

    • So verwenden Sie Vision
    • Bevor Sie hochladen
    • Grundlagen und Limits
    • Bildgröße bewerten
    • Bildkosten berechnen
    • Bildqualität sicherstellen
    • Prompt-Beispiele
    • Über die Prompt-Beispiele
    • Base64-codiertes Bildbeispiel
    • URL-basiertes Bildbeispiel
    • Files API-Bildbeispiel
    • Einschränkungen
    • Häufig gestellte Fragen
    • Tiefer in Vision eintauchen