Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Claudeのような最も高度な言語モデルでも、与えられた文脈と矛盾する、または事実に反するテキストを生成することがあります。この現象は「幻覚」として知られており、AIを活用したソリューションの信頼性を損なう可能性があります。 このガイドでは、幻覚を最小限に抑え、Claudeの出力の正確性と信頼性を確保するための技術を探ります。
思考連鎖による検証: 最終的な回答を出す前に、Claudeに段階的な推論を説明させます。これにより、誤った論理や仮定を明らかにすることができます。
N回検証の最適化: 同じプロンプトを複数回実行し、出力を比較します。出力間の不一致は幻覚を示している可能性があります。
反復的な改善: Claudeの出力を後続のプロンプトの入力として使用し、以前の記述の検証や拡張を依頼します。これにより、不一致を発見して修正することができます。
外部知識の制限: 提供された文書のみを使用し、一般的な知識を使用しないようClaudeに明示的に指示します。