Loading...
    • Guida per sviluppatori
    • Riferimento API
    • MCP
    • Risorse
    • Note sulla versione
    Search...
    ⌘K
    Primi passi
    Introduzione a ClaudeAvvio rapido
    Modelli e prezzi
    Panoramica dei modelliScelta di un modelloNovità in Claude 4.5Migrazione a Claude 4.5Deprecazione dei modelliPrezzi
    Crea con Claude
    Panoramica delle funzioniUtilizzo dell'API MessagesFinestre di contestoBest practice per i prompt
    Capacità
    Prompt cachingModifica del contestoExtended thinkingSforzoStreaming dei messaggiElaborazione batchCitazioniSupporto multilingueConteggio dei tokenEmbeddingsVisioneSupporto PDFAPI FilesRisultati di ricercaOutput strutturati
    Strumenti
    PanoramicaCome implementare l'uso degli strumentiStreaming granulare degli strumentiStrumento BashStrumento di esecuzione del codiceChiamata programmatica degli strumentiStrumento Computer useStrumento Editor di testoStrumento Web fetchStrumento Web searchStrumento MemoryStrumento Tool search
    Agent Skills
    PanoramicaAvvio rapidoBest practiceUtilizzo di Skills con l'API
    Agent SDK
    PanoramicaAvvio rapidoTypeScript SDKTypeScript V2 (anteprima)Python SDKGuida alla migrazione
    MCP nell'API
    Connettore MCPServer MCP remoti
    Claude su piattaforme di terze parti
    Amazon BedrockMicrosoft FoundryVertex AI
    Prompt engineering
    PanoramicaGeneratore di promptUsa modelli di promptMiglioratore di promptSii chiaro e direttoUsa esempi (multishot prompting)Lascia pensare Claude (CoT)Usa tag XMLDai a Claude un ruolo (prompt di sistema)Precompila la risposta di ClaudeConcatena prompt complessiSuggerimenti per il contesto lungoSuggerimenti per extended thinking
    Test e valutazione
    Definisci criteri di successoSviluppa casi di testUtilizzo dello strumento di valutazioneRiduzione della latenza
    Rafforza i guardrail
    Riduci le allucinazioniAumenta la coerenza dell'outputMitigare i jailbreakStreaming dei rifiutiRiduci la perdita di promptMantieni Claude nel personaggio
    Amministrazione e monitoraggio
    Panoramica dell'Admin APIAPI di utilizzo e costiAPI Claude Code Analytics
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    Strumenti

    Fine-grained tool streaming

    Tool use now supports fine-grained streaming for parameter values. This allows developers to stream tool use parameters without buffering / JSON validation, reducing the latency to begin receiving large parameters.
    • How to use fine-grained tool streaming
    • Handling invalid JSON in tool responses

    Tool use now supports fine-grained streaming for parameter values. This allows developers to stream tool use parameters without buffering / JSON validation, reducing the latency to begin receiving large parameters.

    Fine-grained tool streaming is available via the Claude API, AWS Bedrock, Google Cloud's Vertex AI, and Microsoft Foundry.

    Fine-grained tool streaming is a beta feature. Please make sure to evaluate your responses before using it in production.

    Please use this form to provide feedback on the quality of the model responses, the API itself, or the quality of the documentation—we cannot wait to hear from you!

    When using fine-grained tool streaming, you may potentially receive invalid or partial JSON inputs. Please make sure to account for these edge cases in your code.

    How to use fine-grained tool streaming

    To use this beta feature, simply add the beta header fine-grained-tool-streaming-2025-05-14 to a tool use request and turn on streaming.

    Here's an example of how to use fine-grained tool streaming with the API:

    curl https://api.anthropic.com/v1/messages \
      -H "content-type: application/json" \
      -H "x-api-key: $ANTHROPIC_API_KEY" \
      -H "anthropic-version: 2023-06-01" \
      -H "anthropic-beta: fine-grained-tool-streaming-2025-05-14" \
      -d '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 65536,
        "tools": [
          {
            "name": "make_file",
            "description": "Write text to a file",
            "input_schema": {
              "type": "object",
              "properties": {
                "filename": {
                  "type": "string",
                  "description": "The filename to write text to"
                },
                "lines_of_text": {
                  "type": "array",
                  "description": "An array of lines of text to write to the file"
                }
              },
              "required": ["filename", "lines_of_text"]
            }
          }
        ],
        "messages": [
          {
            "role": "user",
            "content": "Can you write a long poem and make a file called poem.txt?"
          }
        ],
        "stream": true
      }' | jq '.usage'

    In this example, fine-grained tool streaming enables Claude to stream the lines of a long poem into the tool call make_file without buffering to validate if the lines_of_text parameter is valid JSON. This means you can see the parameter stream as it arrives, without having to wait for the entire parameter to buffer and validate.

    With fine-grained tool streaming, tool use chunks start streaming faster, and are often longer and contain fewer word breaks. This is due to differences in chunking behavior.

    Example:

    Without fine-grained streaming (15s delay):

    Chunk 1: '{"'
    Chunk 2: 'query": "Ty'
    Chunk 3: 'peScri'
    Chunk 4: 'pt 5.0 5.1 '
    Chunk 5: '5.2 5'
    Chunk 6: '.3'
    Chunk 8: ' new f'
    Chunk 9: 'eatur'
    ...

    With fine-grained streaming (3s delay):

    Chunk 1: '{"query": "TypeScript 5.0 5.1 5.2 5.3'
    Chunk 2: ' new features comparison'

    Because fine-grained streaming sends parameters without buffering or JSON validation, there is no guarantee that the resulting stream will complete in a valid JSON string. Particularly, if the stop reason max_tokens is reached, the stream may end midway through a parameter and may be incomplete. You will generally have to write specific support to handle when max_tokens is reached.

    Handling invalid JSON in tool responses

    When using fine-grained tool streaming, you may receive invalid or incomplete JSON from the model. If you need to pass this invalid JSON back to the model in an error response block, you may wrap it in a JSON object to ensure proper handling (with a reasonable key). For example:

    {
      "INVALID_JSON": "<your invalid json string>"
    }

    This approach helps the model understand that the content is invalid JSON while preserving the original malformed data for debugging purposes.

    When wrapping invalid JSON, make sure to properly escape any quotes or special characters in the invalid JSON string to maintain valid JSON structure in the wrapper object.