Quando effettui una richiesta all'API Messages, la risposta di Claude include un campo stop_reason che indica il motivo per cui il modello ha smesso di generare la sua risposta. Comprendere questi valori è cruciale per costruire applicazioni robuste che gestiscono diversi tipi di risposta in modo appropriato.
Per i dettagli su stop_reason nella risposta dell'API, consulta il riferimento dell'API Messages.
Il campo stop_reason fa parte di ogni risposta riuscita dell'API Messages. A differenza degli errori, che indicano fallimenti nell'elaborazione della tua richiesta, stop_reason ti dice il motivo per cui Claude ha completato con successo la generazione della sua risposta.
{
"id": "msg_01234",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Here's the answer to your question..."
}
],
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 100,
"output_tokens": 50
}
}Il motivo di arresto più comune. Indica che Claude ha completato la sua risposta naturalmente.
if response.stop_reason == "end_turn":
# Process the complete response
print(response.content[0].text)A volte Claude restituisce una risposta vuota (esattamente 2-3 token senza contenuto) con stop_reason: "end_turn". Questo accade tipicamente quando Claude interpreta che il turno dell'assistente è completo, in particolare dopo i risultati degli strumenti.
Cause comuni:
Come prevenire risposte vuote:
# INCORRECT: Adding text immediately after tool_result
messages = [
{"role": "user", "content": "Calculate the sum of 1234 and 5678"},
{"role": "assistant", "content": [
{
"type": "tool_use",
"id": "toolu_123",
"name": "calculator",
"input": {"operation": "add", "a": 1234, "b": 5678}
}
]},
{"role": "user", "content": [
{
"type": "tool_result",
"tool_use_id": "toolu_123",
"content": "6912"
},
{
"type": "text",
"text": "Here's the result" # Don't add text after tool_result
}
]}
]
# CORRECT: Send tool results directly without additional text
messages = [
{"role": "user", "content": "Calculate the sum of 1234 and 5678"},
{"role": "assistant", "content": [
{
"type": "tool_use",
"id": "toolu_123",
"name": "calculator",
"input": {"operation": "add", "a": 1234, "b": 5678}
}
]},
{"role": "user", "content": [
{
"type": "tool_result",
"tool_use_id": "toolu_123",
"content": "6912"
}
]} # Just the tool_result, no additional text
]
# If you still get empty responses after fixing the above:
def handle_empty_response(client, messages):
response = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
messages=messages
)
# Check if response is empty
if (response.stop_reason == "end_turn" and
not response.content):
# INCORRECT: Don't just retry with the empty response
# This won't work because Claude already decided it's done
# CORRECT: Add a continuation prompt in a NEW user message
messages.append({"role": "user", "content": "Please continue"})
response = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
messages=messages
)
return responseBest practices:
Claude si è fermato perché ha raggiunto il limite max_tokens specificato nella tua richiesta.
# Request with limited tokens
response = client.messages.create(
model="claude-sonnet-4-5",
max_tokens=10,
messages=[{"role": "user", "content": "Explain quantum physics"}]
)
if response.stop_reason == "max_tokens":
# Response was truncated
print("Response was cut off at token limit")
# Consider making another request to continueClaude ha incontrato una delle tue sequenze di arresto personalizzate.
response = client.messages.create(
model="claude-sonnet-4-5",
max_tokens=1024,
stop_sequences=["END", "STOP"],
messages=[{"role": "user", "content": "Generate text until you say END"}]
)
if response.stop_reason == "stop_sequence":
print(f"Stopped at sequence: {response.stop_sequence}")Claude sta chiamando uno strumento e si aspetta che tu lo esegua.
Per la maggior parte delle implementazioni di utilizzo degli strumenti, consigliamo di utilizzare il tool runner che gestisce automaticamente l'esecuzione degli strumenti, la formattazione dei risultati e la gestione della conversazione.
response = client.messages.create(
model="claude-sonnet-4-5",
max_tokens=1024,
tools=[weather_tool],
messages=[{"role": "user", "content": "What's the weather?"}]
)
if response.stop_reason == "tool_use":
# Extract and execute the tool
for content in response.content:
if content.type == "tool_use":
result = execute_tool(content.name, content.input)
# Return result to Claude for final responseUtilizzato con strumenti server come la ricerca web quando Claude ha bisogno di mettere in pausa un'operazione di lunga durata.
response = client.messages.create(
model="claude-sonnet-4-5",
max_tokens=1024,
tools=[{"type": "web_search_20250305", "name": "web_search"}],
messages=[{"role": "user", "content": "Search for latest AI news"}]
)
if response.stop_reason == "pause_turn":
# Continue the conversation
messages = [
{"role": "user", "content": original_query},
{"role": "assistant", "content": response.content}
]
continuation = client.messages.create(
model="claude-sonnet-4-5",
messages=messages,
tools=[{"type": "web_search_20250305", "name": "web_search"}]
)Claude ha rifiutato di generare una risposta a causa di problemi di sicurezza.
response = client.messages.create(
model="claude-sonnet-4-5",
max_tokens=1024,
messages=[{"role": "user", "content": "[Unsafe request]"}]
)
if response.stop_reason == "refusal":
# Claude declined to respond
print("Claude was unable to process this request")
# Consider rephrasing or modifying the requestSe incontri frequentemente motivi di arresto refusal mentre utilizzi Claude Sonnet 4.5 o Opus 4.1, puoi provare ad aggiornare le tue chiamate API per utilizzare Sonnet 4 (claude-sonnet-4-20250514), che ha restrizioni di utilizzo diverse. Scopri di più su come comprendere i filtri di sicurezza dell'API di Sonnet 4.5.
Per saperne di più sui rifiuti attivati dai filtri di sicurezza dell'API per Claude Sonnet 4.5, consulta Comprensione dei filtri di sicurezza dell'API di Sonnet 4.5.
Claude si è fermato perché ha raggiunto il limite della finestra di contesto del modello. Questo ti consente di richiedere il massimo numero possibile di token senza conoscere la dimensione esatta dell'input.
# Request with maximum tokens to get as much as possible
response = client.messages.create(
model="claude-sonnet-4-5",
max_tokens=64000, # Model's maximum output tokens
messages=[{"role": "user", "content": "Large input that uses most of context window..."}]
)
if response.stop_reason == "model_context_window_exceeded":
# Response hit context window limit before max_tokens
print("Response reached model's context window limit")
# The response is still valid but was limited by context windowQuesto motivo di arresto è disponibile per impostazione predefinita in Sonnet 4.5 e nei modelli più recenti. Per i modelli precedenti, utilizza l'intestazione beta model-context-window-exceeded-2025-08-26 per abilitare questo comportamento.
Abituati a controllare stop_reason nella tua logica di gestione delle risposte:
def handle_response(response):
if response.stop_reason == "tool_use":
return handle_tool_use(response)
elif response.stop_reason == "max_tokens":
return handle_truncation(response)
elif response.stop_reason == "model_context_window_exceeded":
return handle_context_limit(response)
elif response.stop_reason == "pause_turn":
return handle_pause(response)
elif response.stop_reason == "refusal":
return handle_refusal(response)
else:
# Handle end_turn and other cases
return response.content[0].textQuando una risposta viene troncata a causa di limiti di token o finestra di contesto:
def handle_truncated_response(response):
if response.stop_reason in ["max_tokens", "model_context_window_exceeded"]:
# Option 1: Warn the user about the specific limit
if response.stop_reason == "max_tokens":
message = "[Response truncated due to max_tokens limit]"
else:
message = "[Response truncated due to context window limit]"
return f"{response.content[0].text}\n\n{message}"
# Option 2: Continue generation
messages = [
{"role": "user", "content": original_prompt},
{"role": "assistant", "content": response.content[0].text}
]
continuation = client.messages.create(
model="claude-sonnet-4-5",
max_tokens=1024,
messages=messages + [{"role": "user", "content": "Please continue"}]
)
return response.content[0].text + continuation.content[0].textPer strumenti server che potrebbero mettersi in pausa:
def handle_paused_conversation(initial_response, max_retries=3):
response = initial_response
messages = [{"role": "user", "content": original_query}]
for attempt in range(max_retries):
if response.stop_reason != "pause_turn":
break
messages.append({"role": "assistant", "content": response.content})
response = client.messages.create(
model="claude-sonnet-4-5",
messages=messages,
tools=original_tools
)
return responseÈ importante distinguere tra i valori di stop_reason e gli errori effettivi:
try:
response = client.messages.create(...)
# Handle successful response with stop_reason
if response.stop_reason == "max_tokens":
print("Response was truncated")
except anthropic.APIError as e:
# Handle actual errors
if e.status_code == 429:
print("Rate limit exceeded")
elif e.status_code == 500:
print("Server error")Quando si utilizza lo streaming, stop_reason è:
null nell'evento iniziale message_startmessage_deltawith client.messages.stream(...) as stream:
for event in stream:
if event.type == "message_delta":
stop_reason = event.delta.stop_reason
if stop_reason:
print(f"Stream ended with: {stop_reason}")Più semplice con tool runner: L'esempio seguente mostra la gestione manuale degli strumenti. Per la maggior parte dei casi d'uso, il tool runner gestisce automaticamente l'esecuzione degli strumenti con molto meno codice.
def complete_tool_workflow(client, user_query, tools):
messages = [{"role": "user", "content": user_query}]
while True:
response = client.messages.create(
model="claude-sonnet-4-5",
messages=messages,
tools=tools
)
if response.stop_reason == "tool_use":
# Execute tools and continue
tool_results = execute_tools(response.content)
messages.append({"role": "assistant", "content": response.content})
messages.append({"role": "user", "content": tool_results})
else:
# Final response
return responsedef get_complete_response(client, prompt, max_attempts=3):
messages = [{"role": "user", "content": prompt}]
full_response = ""
for _ in range(max_attempts):
response = client.messages.create(
model="claude-sonnet-4-5",
messages=messages,
max_tokens=4096
)
full_response += response.content[0].text
if response.stop_reason != "max_tokens":
break
# Continue from where it left off
messages = [
{"role": "user", "content": prompt},
{"role": "assistant", "content": full_response},
{"role": "user", "content": "Please continue from where you left off."}
]
return full_responseCon il motivo di arresto model_context_window_exceeded, puoi richiedere il massimo numero possibile di token senza calcolare la dimensione dell'input:
def get_max_possible_tokens(client, prompt):
"""
Get as many tokens as possible within the model's context window
without needing to calculate input token count
"""
response = client.messages.create(
model="claude-sonnet-4-5",
messages=[{"role": "user", "content": prompt}],
max_tokens=64000 # Set to model's maximum output tokens
)
if response.stop_reason == "model_context_window_exceeded":
# Got the maximum possible tokens given input size
print(f"Generated {response.usage.output_tokens} tokens (context limit reached)")
elif response.stop_reason == "max_tokens":
# Got exactly the requested tokens
print(f"Generated {response.usage.output_tokens} tokens (max_tokens reached)")
else:
# Natural completion
print(f"Generated {response.usage.output_tokens} tokens (natural completion)")
return response.content[0].textGestendo correttamente i valori di stop_reason, puoi costruire applicazioni più robuste che gestiscono con eleganza diversi scenari di risposta e forniscono migliori esperienze utente.