Loading...
    • Developer Guide
    • API Reference
    • MCP
    • Resources
    • Release Notes
    Search...
    ⌘K
    First steps
    Intro to ClaudeQuickstart
    Models & pricing
    Models overviewChoosing a modelWhat's new in Claude 4.5Migrating to Claude 4.5Model deprecationsPricing
    Build with Claude
    Features overviewUsing the Messages APIContext windowsPrompting best practices
    Capabilities
    Prompt cachingContext editingExtended thinkingEffortStreaming MessagesBatch processingCitationsMultilingual supportToken countingEmbeddingsVisionPDF supportFiles APISearch resultsStructured outputs
    Tools
    OverviewHow to implement tool useFine-grained tool streamingBash toolCode execution toolProgrammatic tool callingComputer use toolText editor toolWeb fetch toolWeb search toolMemory toolTool search tool
    Agent Skills
    OverviewQuickstartBest practicesUsing Skills with the API
    Agent SDK
    OverviewQuickstartTypeScript SDKTypeScript V2 (preview)Python SDKMigration Guide
    MCP in the API
    MCP connectorRemote MCP servers
    Claude on 3rd-party platforms
    Amazon BedrockMicrosoft FoundryVertex AI
    Prompt engineering
    OverviewPrompt generatorUse prompt templatesPrompt improverBe clear and directUse examples (multishot prompting)Let Claude think (CoT)Use XML tagsGive Claude a role (system prompts)Prefill Claude's responseChain complex promptsLong context tipsExtended thinking tips
    Test & evaluate
    Define success criteriaDevelop test casesUsing the Evaluation ToolReducing latency
    Strengthen guardrails
    Reduce hallucinationsIncrease output consistencyMitigate jailbreaksStreaming refusalsReduce prompt leakKeep Claude in character
    Administration and monitoring
    Admin API overviewUsage and Cost APIClaude Code Analytics API
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    Strengthen guardrails

    Reduce hallucinations

    Even the most advanced language models, like Claude, can sometimes generate text that is factually incorrect or inconsistent with the given context. This phenomenon, known as "hallucination," can undermine the reliability of your AI-driven solutions. This guide will explore techniques to minimize hallucinations and ensure Claude's outputs are accurate and trustworthy.

    Basic hallucination minimization strategies

    • Allow Claude to say "I don't know": Explicitly give Claude permission to admit uncertainty. This simple technique can drastically reduce false information.

    • Use direct quotes for factual grounding: For tasks involving long documents (>20K tokens), ask Claude to extract word-for-word quotes first before performing its task. This grounds its responses in the actual text, reducing hallucinations.

    • Verify with citations: Make Claude's response auditable by having it cite quotes and sources for each of its claims. You can also have Claude verify each claim by finding a supporting quote after it generates a response. If it can't find a quote, it must retract the claim.


    Advanced techniques

    • Chain-of-thought verification: Ask Claude to explain its reasoning step-by-step before giving a final answer. This can reveal faulty logic or assumptions.

    • Best-of-N verficiation: Run Claude through the same prompt multiple times and compare the outputs. Inconsistencies across outputs could indicate hallucinations.

    • Iterative refinement: Use Claude's outputs as inputs for follow-up prompts, asking it to verify or expand on previous statements. This can catch and correct inconsistencies.

    • External knowledge restriction: Explicitly instruct Claude to only use information from provided documents and not its general knowledge.

    Remember, while these techniques significantly reduce hallucinations, they don't eliminate them entirely. Always validate critical information, especially for high-stakes decisions.
    • Basic hallucination minimization strategies
    • Advanced techniques