Structured outputs
Structured outputs constrain Claude's responses to follow a specific schema, ensuring valid, parseable output for downstream processing. Use JSON outputs (output_format) for structured data responses, or strict tool use (strict: true) for guaranteed schema validation on tool names and inputs.
Structured outputs are currently available as a public beta feature in the Claude API for Claude Sonnet 4.5 and Claude Opus 4.1.
To use the feature, set the beta header structured-outputs-2025-11-13.
Share feedback using this form.
Why use structured outputs
Without structured outputs, Claude can generate malformed JSON responses or invalid tool inputs that break your applications. Even with careful prompting, you may encounter:
- Parsing errors from invalid JSON syntax
- Missing required fields
- Inconsistent data types
- Schema violations requiring error handling and retries
Structured outputs guarantee schema-compliant responses through constrained decoding:
- Always valid: No more
JSON.parse()errors - Type safe: Guaranteed field types and required fields
- Reliable: No retries needed for schema violations
- Two modes: JSON for tasks like data extraction, and strict tools for situations like complex tools and agentic workflows
Quick start
When to use JSON outputs vs strict tool use
Choose the right mode for your use case:
| Use JSON outputs when | Use strict tool use when |
|---|---|
| You need Claude's response in a specific format | You need validated parameters and tool names for tool calls |
| Extracting data from images or text | Building agentic workflows |
| Generating structured reports | Ensuring type-safe function calls |
| Formatting API responses | Complex tools with many and/or nested properties |
Why strict tool use matters for agents
Building reliable agentic systems requires guaranteed schema conformance. Invalid tool parameters break your functions and workflows. Claude might return incompatible types ("2" instead of 2) or missing fields, causing runtime errors.
Strict tool use guarantees type-safe parameters:
- Functions receive correctly-typed arguments every time
- No need to validate and retry tool calls
- Production-ready agents that work consistently at scale
For example, suppose a booking system needs passengers: int. Without strict mode, Claude might provide passengers: "two" or passengers: "2". With strict: true, you're guaranteed passengers: 2.
How structured outputs work
Working with JSON outputs in SDKs
The Python and TypeScript SDKs provide helpers that make it easier to work with JSON outputs, including schema transformation, automatic validation, and integration with popular schema libraries.
Using Pydantic and Zod
For Python and TypeScript developers, you can use familiar schema definition tools like Pydantic and Zod instead of writing raw JSON schemas.
JSON outputs only
SDK helpers (Pydantic, Zod, parse()) only work with JSON outputs (output_format).
These helpers transform and validate Claude's output to you. Strict tool use validates Claude's input to your tools, which use the existing input_schema field in tool definitions.
For strict tool use, define your input_schema directly in the tool definition with strict: true.
from pydantic import BaseModel
from anthropic import Anthropic, transform_schema
class ContactInfo(BaseModel):
name: str
email: str
plan_interest: str
demo_requested: bool
client = Anthropic()
# With .create() - requires transform_schema()
response = client.beta.messages.create(
model="claude-sonnet-4-5",
max_tokens=1024,
betas=["structured-outputs-2025-11-13"],
messages=[
{
"role": "user",
"content": "Extract the key information from this email: John Smith ([email protected]) is interested in our Enterprise plan and wants to schedule a demo for next Tuesday at 2pm."
}
],
output_format={
"type": "json_schema",
"schema": transform_schema(ContactInfo),
}
)
print(response.content[0].text)
# With .parse() - can pass Pydantic model directly
response = client.beta.messages.parse(
model="claude-sonnet-4-5",
max_tokens=1024,
betas=["structured-outputs-2025-11-13"],
messages=[
{
"role": "user",
"content": "Extract the key information from this email: John Smith ([email protected]) is interested in our Enterprise plan and wants to schedule a demo for next Tuesday at 2pm."
}
],
output_format=ContactInfo,
)
print(response.parsed_output)SDK-specific methods
Python: client.beta.messages.parse() (Recommended)
The parse() method automatically transforms your Pydantic model, validates the response, and returns a parsed_output attribute.
The parse() method is available on client.beta.messages, not client.messages.
Python: transform_schema() helper
For when you need to manually transform schemas before sending, or when you want to modify a Pydantic-generated schema. Unlike client.beta.messages.parse(), which transforms provided schemas automatically, this gives you the transformed schema so you can further customize it.
How SDK transformation works
Both Python and TypeScript SDKs automatically transform schemas with unsupported features:
- Remove unsupported constraints (e.g.,
minimum,maximum,minLength,maxLength) - Update descriptions with constraint info (e.g., "Must be at least 100"), when the constraint is not directly supported with structured outputs
- Add
additionalProperties: falseto all objects - Filter string formats to supported list only
- Validate responses against your original schema (with all constraints)
This means Claude receives a simplified schema, but your code still enforces all constraints through validation.
Example: A Pydantic field with minimum: 100 becomes a plain integer in the sent schema, but the description is updated to "Must be at least 100", and the SDK validates the response against the original constraint.
Common use cases
Important considerations
Grammar compilation and caching
Structured outputs use constrained sampling with compiled grammar artifacts. This introduces some performance characteristics to be aware of:
- First request latency: The first time you use a specific schema, there will be additional latency while the grammar is compiled
- Automatic caching: Compiled grammars are cached for 24 hours from last use, making subsequent requests much faster
- Cache invalidation: The cache is invalidated if you change:
- The JSON schema structure
- The set of tools in your request (when using both structured outputs and tool use)
- Changing only
nameordescriptionfields does not invalidate the cache
Prompt modification and token costs
When using structured outputs, Claude automatically receives an additional system prompt explaining the expected output format. This means:
- Your input token count will be slightly higher
- The injected prompt costs you tokens like any other system prompt
- Changing the
output_formatparameter will invalidate any prompt cache for that conversation thread
JSON Schema limitations
Structured outputs support standard JSON Schema with some limitations. Both JSON outputs and strict tool use share these limitations.
The Python and TypeScript SDKs can automatically transform schemas with unsupported features by removing them and adding constraints to field descriptions. See SDK-specific methods for details.
Invalid outputs
While structured outputs guarantee schema compliance in most cases, there are scenarios where the output may not match your schema:
Refusals (stop_reason: "refusal")
Claude maintains its safety and helpfulness properties even when using structured outputs. If Claude refuses a request for safety reasons:
- The response will have
stop_reason: "refusal" - You'll receive a 200 status code
- You'll be billed for the tokens generated
- The output may not match your schema (the refusal takes precedence)
Token limit reached (stop_reason: "max_tokens")
If the response is cut off due to reaching the max_tokens limit:
- The response will have
stop_reason: "max_tokens" - The output may be incomplete and not match your schema
- Retry with a higher
max_tokensvalue to get the complete structured output
Schema validation errors
If your schema uses unsupported features or is too complex, you'll receive a 400 error:
"Too many recursive definitions in schema"
- Cause: Schema has excessive or cyclic recursive definitions
- Solution: Simplify schema structure, reduce nesting depth
"Schema is too complex"
- Cause: Schema exceeds complexity limits
- Solution: Break into smaller schemas, simplify structure, or reduce the number of tools marked as
strict: true
For persistent issues with valid schemas, contact support with your schema definition.
Feature compatibility
Works with:
- Batch processing: Process structured outputs at scale with 50% discount
- Token counting: Count tokens without compilation
- Streaming: Stream structured outputs like normal responses
- Combined usage: Use JSON outputs (
output_format) and strict tool use (strict: true) together in the same request
Incompatible with:
- Citations: Citations require interleaving citation blocks with text, which conflicts with strict JSON schema constraints. Returns 400 error if citations enabled with
output_format. - Message Prefilling: Incompatible with JSON outputs
Grammar scope: Grammars apply only to Claude's direct output, not to tool use calls, tool results, or thinking tags (when using Extended Thinking). Grammar state resets between sections, allowing Claude to think freely while still producing structured output in the final response.