Loading...
    • Developer Guide
    • API Reference
    • MCP
    • Resources
    • Release Notes
    Search...
    ⌘K
    First steps
    Intro to ClaudeQuickstart
    Models & pricing
    Models overviewChoosing a modelWhat's new in Claude 4.5Migrating to Claude 4.5Model deprecationsPricing
    Build with Claude
    Features overviewUsing the Messages APIContext windowsPrompting best practices
    Capabilities
    Prompt cachingContext editingExtended thinkingEffortStreaming MessagesBatch processingCitationsMultilingual supportToken countingEmbeddingsVisionPDF supportFiles APISearch resultsStructured outputs
    Tools
    OverviewHow to implement tool useFine-grained tool streamingBash toolCode execution toolProgrammatic tool callingComputer use toolText editor toolWeb fetch toolWeb search toolMemory toolTool search tool
    Agent Skills
    OverviewQuickstartBest practicesUsing Skills with the API
    Agent SDK
    OverviewQuickstartTypeScript SDKTypeScript V2 (preview)Python SDKMigration Guide
    MCP in the API
    MCP connectorRemote MCP servers
    Claude on 3rd-party platforms
    Amazon BedrockMicrosoft FoundryVertex AI
    Prompt engineering
    OverviewPrompt generatorUse prompt templatesPrompt improverBe clear and directUse examples (multishot prompting)Let Claude think (CoT)Use XML tagsGive Claude a role (system prompts)Prefill Claude's responseChain complex promptsLong context tipsExtended thinking tips
    Test & evaluate
    Define success criteriaDevelop test casesUsing the Evaluation ToolReducing latency
    Strengthen guardrails
    Reduce hallucinationsIncrease output consistencyMitigate jailbreaksStreaming refusalsReduce prompt leakKeep Claude in character
    Administration and monitoring
    Admin API overviewUsage and Cost APIClaude Code Analytics API
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    Build with Claude

    Using the Messages API

    Practical patterns and examples for using the Messages API effectively

    This guide covers common patterns for working with the Messages API, including basic requests, multi-turn conversations, prefill techniques, and vision capabilities. For complete API specifications, see the Messages API reference.

    Basic request and response

    #!/bin/sh
    curl https://api.anthropic.com/v1/messages \
         --header "x-api-key: $ANTHROPIC_API_KEY" \
         --header "anthropic-version: 2023-06-01" \
         --header "content-type: application/json" \
         --data \
    '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 1024,
        "messages": [
            {"role": "user", "content": "Hello, Claude"}
        ]
    }'
    JSON
    {
      "id": "msg_01XFDUDYJgAACzvnptvVoYEL",
      "type": "message",
      "role": "assistant",
      "content": [
        {
          "type": "text",
          "text": "Hello!"
        }
      ],
      "model": "claude-sonnet-4-5",
      "stop_reason": "end_turn",
      "stop_sequence": null,
      "usage": {
        "input_tokens": 12,
        "output_tokens": 6
      }
    }

    Multiple conversational turns

    The Messages API is stateless, which means that you always send the full conversational history to the API. You can use this pattern to build up a conversation over time. Earlier conversational turns don't necessarily need to actually originate from Claude — you can use synthetic assistant messages.

    #!/bin/sh
    curl https://api.anthropic.com/v1/messages \
         --header "x-api-key: $ANTHROPIC_API_KEY" \
         --header "anthropic-version: 2023-06-01" \
         --header "content-type: application/json" \
         --data \
    '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 1024,
        "messages": [
            {"role": "user", "content": "Hello, Claude"},
            {"role": "assistant", "content": "Hello!"},
            {"role": "user", "content": "Can you describe LLMs to me?"}
    
        ]
    }'
    JSON
    {
        "id": "msg_018gCsTGsXkYJVqYPxTgDHBU",
        "type": "message",
        "role": "assistant",
        "content": [
            {
                "type": "text",
                "text": "Sure, I'd be happy to provide..."
            }
        ],
        "stop_reason": "end_turn",
        "stop_sequence": null,
        "usage": {
          "input_tokens": 30,
          "output_tokens": 309
        }
    }

    Putting words in Claude's mouth

    You can pre-fill part of Claude's response in the last position of the input messages list. This can be used to shape Claude's response. The example below uses "max_tokens": 1 to get a single multiple choice answer from Claude.

    #!/bin/sh
    curl https://api.anthropic.com/v1/messages \
         --header "x-api-key: $ANTHROPIC_API_KEY" \
         --header "anthropic-version: 2023-06-01" \
         --header "content-type: application/json" \
         --data \
    '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 1,
        "messages": [
            {"role": "user", "content": "What is latin for Ant? (A) Apoidea, (B) Rhopalocera, (C) Formicidae"},
            {"role": "assistant", "content": "The answer is ("}
        ]
    }'
    JSON
    {
      "id": "msg_01Q8Faay6S7QPTvEUUQARt7h",
      "type": "message",
      "role": "assistant",
      "content": [
        {
          "type": "text",
          "text": "C"
        }
      ],
      "model": "claude-sonnet-4-5",
      "stop_reason": "max_tokens",
      "stop_sequence": null,
      "usage": {
        "input_tokens": 42,
        "output_tokens": 1
      }
    }

    For more information on prefill techniques, see our prefill guide.

    Vision

    Claude can read both text and images in requests. We support both base64 and url source types for images, and the image/jpeg, image/png, image/gif, and image/webp media types. See our vision guide for more details.

    #!/bin/sh
    
    # Option 1: Base64-encoded image
    IMAGE_URL="https://upload.wikimedia.org/wikipedia/commons/a/a7/Camponotus_flavomarginatus_ant.jpg"
    IMAGE_MEDIA_TYPE="image/jpeg"
    IMAGE_BASE64=$(curl "$IMAGE_URL" | base64)
    
    curl https://api.anthropic.com/v1/messages \
         --header "x-api-key: $ANTHROPIC_API_KEY" \
         --header "anthropic-version: 2023-06-01" \
         --header "content-type: application/json" \
         --data \
    '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 1024,
        "messages": [
            {"role": "user", "content": [
                {"type": "image", "source": {
                    "type": "base64",
                    "media_type": "'$IMAGE_MEDIA_TYPE'",
                    "data": "'$IMAGE_BASE64'"
                }},
                {"type": "text", "text": "What is in the above image?"}
            ]}
        ]
    }'
    
    # Option 2: URL-referenced image
    curl https://api.anthropic.com/v1/messages \
         --header "x-api-key: $ANTHROPIC_API_KEY" \
         --header "anthropic-version: 2023-06-01" \
         --header "content-type: application/json" \
         --data \
    '{
        "model": "claude-sonnet-4-5",
        "max_tokens": 1024,
        "messages": [
            {"role": "user", "content": [
                {"type": "image", "source": {
                    "type": "url",
                    "url": "https://upload.wikimedia.org/wikipedia/commons/a/a7/Camponotus_flavomarginatus_ant.jpg"
                }},
                {"type": "text", "text": "What is in the above image?"}
            ]}
        ]
    }'
    JSON
    {
      "id": "msg_01EcyWo6m4hyW8KHs2y2pei5",
      "type": "message",
      "role": "assistant",
      "content": [
        {
          "type": "text",
          "text": "This image shows an ant, specifically a close-up view of an ant. The ant is shown in detail, with its distinct head, antennae, and legs clearly visible. The image is focused on capturing the intricate details and features of the ant, likely taken with a macro lens to get an extreme close-up perspective."
        }
      ],
      "model": "claude-sonnet-4-5",
      "stop_reason": "end_turn",
      "stop_sequence": null,
      "usage": {
        "input_tokens": 1551,
        "output_tokens": 71
      }
    }

    Tool use and computer use

    See our guide for examples of how to use tools with the Messages API. See our computer use guide for examples of how to control desktop computer environments with the Messages API. For guaranteed JSON output, see Structured Outputs.

    • Basic request and response
    • Multiple conversational turns
    • Putting words in Claude's mouth
    • Vision
    • Tool use and computer use