Tool search tool
The tool search tool enables Claude to work with hundreds or thousands of tools by dynamically discovering and loading them on-demand. Instead of loading all tool definitions into the context window upfront, Claude searches your tool catalog—including tool names, descriptions, argument names, and argument descriptions—and loads only the tools it needs.
This approach solves two critical challenges as tool libraries scale:
- Context efficiency: Tool definitions can consume massive portions of your context window (50 tools ≈ 10-20K tokens), leaving less room for actual work
- Tool selection accuracy: Claude's ability to correctly select tools degrades significantly with more than 30-50 conventionally-available tools
Although this is provided as a server-side tool, you can also implement your own client-side tool search functionality. See Custom tool search implementation for details.
The tool search tool is currently in public beta.
To use this feature, add the "advanced-tool-use-2025-11-20" beta header to your API requests.
Please reach out through our feedback form to share your experience with the tool search tool.
Platform and model support
| Platform | Supported models |
|---|---|
| Claude API | Claude Opus 4.5, Claude Sonnet 4.5 |
| Microsoft Foundry | Claude Opus 4.5, Claude Sonnet 4.5 |
| Google Cloud Vertex AI | Claude Opus 4.5, Claude Sonnet 4.5 |
| Amazon Bedrock | Claude Opus 4.5 |
On Amazon Bedrock, server-side tool search is available only via the invoke API, not the converse API.
You can also implement client-side tool search by returning tool_reference blocks from your own search implementation.
How tool search works
There are two tool search variants:
- Regex (
tool_search_tool_regex_20251119): Claude constructs regex patterns to search for tools - BM25 (
tool_search_tool_bm25_20251119): Claude uses natural language queries to search for tools
When you enable the tool search tool:
- You include a tool search tool (e.g.,
tool_search_tool_regex_20251119ortool_search_tool_bm25_20251119) in your tools list - You provide all tool definitions with
defer_loading: truefor tools that shouldn't be loaded immediately - Claude sees only the tool search tool and any non-deferred tools initially
- When Claude needs additional tools, it searches using a tool search tool
- The API returns 3-5 most relevant
tool_referenceblocks - These references are automatically expanded into full tool definitions
- Claude selects from the discovered tools and invokes them
This keeps your context window efficient while maintaining high tool selection accuracy.
Quick start
Here's a simple example with deferred tools:
curl https://api.anthropic.com/v1/messages \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: advanced-tool-use-2025-11-20" \
--header "content-type: application/json" \
--data '{
"model": "claude-sonnet-4-5-20250929",
"max_tokens": 2048,
"messages": [
{
"role": "user",
"content": "What is the weather in San Francisco?"
}
],
"tools": [
{
"type": "tool_search_tool_regex_20251119",
"name": "tool_search_tool_regex"
},
{
"name": "get_weather",
"description": "Get the weather at a specific location",
"input_schema": {
"type": "object",
"properties": {
"location": {"type": "string"},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
},
"defer_loading": true
},
{
"name": "search_files",
"description": "Search through files in the workspace",
"input_schema": {
"type": "object",
"properties": {
"query": {"type": "string"},
"file_types": {
"type": "array",
"items": {"type": "string"}
}
},
"required": ["query"]
},
"defer_loading": true
}
]
}'Tool definition
The tool search tool has two variants:
{
"type": "tool_search_tool_regex_20251119",
"name": "tool_search_tool_regex"
}{
"type": "tool_search_tool_bm25_20251119",
"name": "tool_search_tool_bm25"
}Regex variant query format: Python regex, NOT natural language
When using tool_search_tool_regex_20251119, Claude constructs regex patterns using Python's re.search() syntax, not natural language queries. Common patterns:
"weather"- matches tool names/descriptions containing "weather""get_.*_data"- matches tools likeget_user_data,get_weather_data"database.*query|query.*database"- OR patterns for flexibility"(?i)slack"- case-insensitive search
Maximum query length: 200 characters
BM25 variant query format: Natural language
When using tool_search_tool_bm25_20251119, Claude uses natural language queries to search for tools.
Deferred tool loading
Mark tools for on-demand loading by adding defer_loading: true:
{
"name": "get_weather",
"description": "Get current weather for a location",
"input_schema": {
"type": "object",
"properties": {
"location": { "type": "string" },
"unit": { "type": "string", "enum": ["celsius", "fahrenheit"] }
},
"required": ["location"]
},
"defer_loading": true
}Key points:
- Tools without
defer_loadingare loaded into context immediately - Tools with
defer_loading: trueare only loaded when Claude discovers them via search - The tool search tool itself should never have
defer_loading: true - Keep your 3-5 most frequently used tools as non-deferred for optimal performance
Both tool search variants (regex and bm25) search tool names, descriptions, argument names, and argument descriptions.
Response format
When Claude uses the tool search tool, the response includes new block types:
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "I'll search for tools to help with the weather information."
},
{
"type": "server_tool_use",
"id": "srvtoolu_01ABC123",
"name": "tool_search_tool_regex",
"input": {
"query": "weather"
}
},
{
"type": "tool_result",
"tool_use_id": "srvtoolu_01ABC123",
"content": [{ "type": "tool_reference", "tool_name": "get_weather" }]
},
{
"type": "text",
"text": "I found a weather tool. Let me get the weather for San Francisco."
},
{
"type": "tool_use",
"id": "toolu_01XYZ789",
"name": "get_weather",
"input": { "location": "San Francisco", "unit": "fahrenheit" }
}
],
"stop_reason": "tool_use"
}Understanding the response
server_tool_use: Indicates Claude is invoking the tool search tooltool_resultwithtool_reference: The search results containing references to discovered toolstool_use: Claude invoking the discovered tool
The tool_reference blocks are automatically expanded into full tool definitions before being shown to Claude. You don't need to handle this expansion yourself. It happens automatically in the API as long as you provide all matching tool definitions in the tools parameter.
MCP integration
The tool search tool works with MCP servers. Add the "mcp-client-2025-11-20" beta header to your API request, and then use mcp_toolset with default_config to defer loading MCP tools:
curl https://api.anthropic.com/v1/messages \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "anthropic-beta: advanced-tool-use-2025-11-20,mcp-client-2025-11-20" \
--header "content-type: application/json" \
--data '{
"model": "claude-sonnet-4-5-20250929",
"max_tokens": 2048,
"mcp_servers": [
{
"type": "url",
"name": "database-server",
"url": "https://mcp-db.example.com"
}
],
"tools": [
{
"type": "tool_search_tool_regex_20251119",
"name": "tool_search_tool_regex"
},
{
"type": "mcp_toolset",
"mcp_server_name": "database-server",
"default_config": {
"defer_loading": true
},
"configs": {
"search_events": {
"defer_loading": false
}
}
}
],
"messages": [
{
"role": "user",
"content": "What events are in my database?"
}
]
}'MCP configuration options:
default_config.defer_loading: Set default for all tools from the MCP serverconfigs: Override defaults for specific tools by name- Combine multiple MCP servers with tool search for massive tool libraries
Custom tool search implementation
You can implement your own tool search logic (e.g., using embeddings or semantic search) by returning tool_reference blocks from a custom tool:
{
"type": "tool_result",
"tool_use_id": "toolu_custom_search",
"content": [{ "type": "tool_reference", "tool_name": "discovered_tool_name" }]
}Every tool referenced must have a corresponding tool definition in the top-level tools parameter with defer_loading: true. This approach lets you use more sophisticated search algorithms while maintaining compatibility with the tool search system.
For a complete example using embeddings, see our tool search with embeddings cookbook.
Error handling
The tool search tool is not compatible with tool use examples. If you need to provide examples of tool usage, use standard tool calling without tool search.
HTTP errors (400 status)
These errors prevent the request from being processed:
All tools deferred:
{
"type": "error",
"error": {
"type": "invalid_request_error",
"message": "All tools have defer_loading set. At least one tool must be non-deferred."
}
}Missing tool definition:
{
"type": "error",
"error": {
"type": "invalid_request_error",
"message": "Tool reference 'unknown_tool' has no corresponding tool definition"
}
}Tool result errors (200 status)
Errors during tool execution return a 200 response with error information in the body:
{
"type": "tool_result",
"tool_use_id": "srvtoolu_01ABC123",
"content": {
"type": "tool_search_tool_result_error",
"error_code": "invalid_pattern"
}
}Error codes:
too_many_requests: Rate limit exceeded for tool search operationsinvalid_pattern: Malformed regex patternpattern_too_long: Pattern exceeds 200 character limitunavailable: Tool search service temporarily unavailable
Common mistakes
Prompt caching
Tool search works with prompt caching. Add cache_control breakpoints to optimize multi-turn conversations:
import anthropic
client = anthropic.Anthropic()
# First request with tool search
messages = [
{
"role": "user",
"content": "What's the weather in Seattle?"
}
]
response1 = client.beta.messages.create(
model="claude-sonnet-4-5-20250929",
betas=["advanced-tool-use-2025-11-20"],
max_tokens=2048,
messages=messages,
tools=[
{
"type": "tool_search_tool_regex_20251119",
"name": "tool_search_tool_regex"
},
{
"name": "get_weather",
"description": "Get weather for a location",
"input_schema": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
},
"defer_loading": True
}
]
)
# Add Claude's response to conversation
messages.append({
"role": "assistant",
"content": response1.content
})
# Second request with cache breakpoint
messages.append({
"role": "user",
"content": "What about New York?",
"cache_control": {"type": "ephemeral"}
})
response2 = client.beta.messages.create(
model="claude-sonnet-4-5-20250929",
betas=["advanced-tool-use-2025-11-20"],
max_tokens=2048,
messages=messages,
tools=[
{
"type": "tool_search_tool_regex_20251119",
"name": "tool_search_tool_regex"
},
{
"name": "get_weather",
"description": "Get weather for a location",
"input_schema": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
},
"defer_loading": True
}
]
)
print(f"Cache read tokens: {response2.usage.get('cache_read_input_tokens', 0)}")The system automatically expands tool_reference blocks throughout the entire conversation history, so Claude can reuse discovered tools in subsequent turns without re-searching.
Streaming
With streaming enabled, you'll receive tool search events as part of the stream:
event: content_block_start
data: {"type": "content_block_start", "index": 1, "content_block": {"type": "server_tool_use", "id": "srvtoolu_xyz789", "name": "tool_search_tool_regex"}}
// Search query streamed
event: content_block_delta
data: {"type": "content_block_delta", "index": 1, "delta": {"type": "input_json_delta", "partial_json": "{\"query\":\"weather\"}"}}
// Pause while search executes
// Search results streamed
event: content_block_start
data: {"type": "content_block_start", "index": 2, "content_block": {"type": "tool_result", "tool_use_id": "srvtoolu_xyz789", "content": [{"type": "tool_reference", "tool_name": "get_weather"}]}}
// Claude continues with discovered toolsBatch requests
You can include the tool search tool in the Messages Batches API. Tool search operations through the Messages Batches API are priced the same as those in regular Messages API requests.
Limits and best practices
Limits
- Maximum tools: 10,000 tools in your catalog
- Search results: Returns 3-5 most relevant tools per search
- Pattern length: Maximum 200 characters for regex patterns
- Model support: Sonnet 4.0+, Opus 4.0+ only (no Haiku)
When to use tool search
Good use cases:
- 10+ tools available in your system
- Tool definitions consuming >10K tokens
- Experiencing tool selection accuracy issues with large tool sets
- Building MCP-powered systems with multiple servers (200+ tools)
- Tool library growing over time
When traditional tool calling might be better:
- Less than 10 tools total
- All tools are frequently used in every request
- Very small tool definitions (<100 tokens total)
Optimization tips
- Keep 3-5 most frequently used tools as non-deferred
- Write clear, descriptive tool names and descriptions
- Use semantic keywords in descriptions that match how users describe tasks
- Add a system prompt section describing available tool categories: "You can search for tools to interact with Slack, GitHub, and Jira"
- Monitor which tools Claude discovers to refine descriptions
Usage and pricing
Tool search tool usage is tracked in the response usage object:
{
"usage": {
"input_tokens": 1024,
"output_tokens": 256,
"server_tool_use": {
"tool_search_requests": 2
}
}
}For current pricing information, see the pricing page.