Loading...
    • Panduan Pengembang
    • Referensi API
    • MCP
    • Sumber Daya
    • Catatan Rilis
    Search...
    ⌘K

    Langkah pertama

    Pengantar ClaudePanduan Cepat

    Model & harga

    Ikhtisar modelMemilih modelApa yang baru di Claude 4.5Migrasi ke Claude 4.5Penghentian modelHarga

    Bangun dengan Claude

    Ikhtisar fiturBekerja dengan Messages APIJendela konteksPraktik terbaik prompting

    Kemampuan

    Penyimpanan cache promptPengeditan konteksPemikiran yang diperluasStreaming MessagesPemrosesan batchKutipanDukungan multibahasaPenghitungan tokenEmbeddingsVisiDukungan PDFFiles APIHasil pencarianAdd-on Google Sheets

    Alat

    Gambaran UmumCara mengimplementasikan penggunaan alatPenggunaan tool yang efisien tokenStreaming tool berbutir halusAlat BashAlat eksekusi kodeAlat penggunaan komputerAlat editor teksAlat web fetchAlat pencarian webAlat memori

    Keterampilan Agen

    IkhtisarMulai dengan Agent Skills di APIPraktik terbaik pembuatan SkillMenggunakan Agent Skills dengan API

    SDK Agen

    Ikhtisar Agent SDKReferensi Agent SDK - TypeScriptReferensi Agent SDK - Python

    Panduan

    Input StreamingMenangani IzinManajemen SesiHosting the Agent SDKMemodifikasi system promptMCP dalam SDKAlat KustomSubagen dalam SDKPerintah Slash dalam SDKAgent Skills dalam SDKMelacak Biaya dan PenggunaanDaftar TodoPlugin dalam SDK

    MCP dalam API

    Konektor MCPServer MCP jarak jauh

    Claude di platform pihak ketiga

    Amazon BedrockVertex AI

    Rekayasa Prompt

    IkhtisarGenerator promptGunakan template promptPerbaikan promptBersikap jelas dan langsungGunakan contoh (multishot prompting)Biarkan Claude berpikir (CoT)Gunakan tag XMLBerikan Claude peran (system prompts)Isi awal respons ClaudeRangkai prompt kompleksTips konteks panjangTips pemikiran diperpanjang

    Uji & evaluasi

    Tentukan kriteria keberhasilanKembangkan kasus ujiMenggunakan Alat EvaluasiMengurangi latensi

    Perkuat perlindungan

    Mengurangi halusinasiMeningkatkan konsistensi outputMitigasi jailbreakhandle-streaming-refusalsMengurangi kebocoran promptMenjaga Claude dalam karakter

    Administrasi dan pemantauan

    Ikhtisar Admin APIAPI Penggunaan dan BiayaClaude Code Analytics API
    Console
    Alat

    Cara mengimplementasikan penggunaan alat

    Panduan lengkap untuk mengimplementasikan penggunaan alat dengan Claude, termasuk spesifikasi alat, praktik terbaik, dan penanganan hasil.

    Memilih model

    Kami merekomendasikan menggunakan model Claude Sonnet (4.5) atau Claude Opus (4.1) terbaru untuk alat yang kompleks dan kueri yang ambigu; mereka menangani beberapa alat dengan lebih baik dan mencari klarifikasi saat diperlukan.

    Gunakan model Claude Haiku untuk alat yang sederhana, tetapi perhatikan bahwa mereka mungkin menyimpulkan parameter yang hilang.

    Jika menggunakan Claude dengan penggunaan alat dan pemikiran yang diperluas, lihat panduan kami di sini untuk informasi lebih lanjut.

    Menentukan alat klien

    Alat klien (baik yang ditentukan Anthropic maupun yang ditentukan pengguna) ditentukan dalam parameter tingkat atas tools dari permintaan API. Setiap definisi alat mencakup:

    ParameterDeskripsi
    nameNama alat. Harus cocok dengan regex ^[a-zA-Z0-9_-]{1,64}$.
    descriptionDeskripsi plaintext terperinci tentang apa yang dilakukan alat, kapan harus digunakan, dan bagaimana perilakunya.
    input_schemaObjek JSON Schema yang mendefinisikan parameter yang diharapkan untuk alat.

    Prompt sistem penggunaan alat

    Ketika Anda memanggil API Claude dengan parameter tools, kami membuat prompt sistem khusus dari definisi alat, konfigurasi alat, dan prompt sistem yang ditentukan pengguna. Prompt yang dibangun dirancang untuk menginstruksikan model untuk menggunakan alat yang ditentukan dan memberikan konteks yang diperlukan agar alat dapat beroperasi dengan benar:

    In this environment you have access to a set of tools you can use to answer the user's question.
    {{ FORMATTING INSTRUCTIONS }}
    String and scalar parameters should be specified as is, while lists and objects should use JSON format. Note that spaces for string values are not stripped. The output is not expected to be valid XML and is parsed with regular expressions.
    Here are the functions available in JSONSchema format:
    {{ TOOL DEFINITIONS IN JSON SCHEMA }}
    {{ USER SYSTEM PROMPT }}
    {{ TOOL CONFIGURATION }}

    Praktik terbaik untuk definisi alat

    Untuk mendapatkan kinerja terbaik dari Claude saat menggunakan alat, ikuti panduan ini:

    • Berikan deskripsi yang sangat terperinci. Ini adalah faktor paling penting dalam kinerja alat. Deskripsi Anda harus menjelaskan setiap detail tentang alat, termasuk:
      • Apa yang dilakukan alat
      • Kapan harus digunakan (dan kapan tidak boleh digunakan)
      • Apa arti setiap parameter dan bagaimana pengaruhnya terhadap perilaku alat
      • Peringatan atau batasan penting, seperti informasi apa yang tidak dikembalikan alat jika nama alat tidak jelas. Semakin banyak konteks yang dapat Anda berikan kepada Claude tentang alat Anda, semakin baik dalam memutuskan kapan dan bagaimana menggunakannya. Targetkan setidaknya 3-4 kalimat per deskripsi alat, lebih banyak jika alat tersebut kompleks.
    • Prioritaskan deskripsi daripada contoh. Meskipun Anda dapat menyertakan contoh cara menggunakan alat dalam deskripsinya atau dalam prompt yang menyertainya, ini kurang penting daripada memiliki penjelasan yang jelas dan komprehensif tentang tujuan dan parameter alat. Hanya tambahkan contoh setelah Anda telah sepenuhnya mengembangkan deskripsi.

    Deskripsi yang baik dengan jelas menjelaskan apa yang dilakukan alat, kapan menggunakannya, data apa yang dikembalikan, dan apa arti parameter ticker. Deskripsi yang buruk terlalu singkat dan meninggalkan Claude dengan banyak pertanyaan terbuka tentang perilaku dan penggunaan alat.

    Pelari alat (beta)

    Pelari alat menyediakan solusi siap pakai untuk menjalankan alat dengan Claude. Alih-alih menangani panggilan alat, hasil alat, dan manajemen percakapan secara manual, pelari alat secara otomatis:

    • Menjalankan alat ketika Claude memanggilnya
    • Menangani siklus permintaan/respons
    • Mengelola status percakapan
    • Menyediakan keamanan tipe dan validasi

    Kami merekomendasikan agar Anda menggunakan pelari alat untuk sebagian besar implementasi penggunaan alat.

    Pelari alat saat ini dalam beta dan hanya tersedia di SDK Python dan TypeScript.

    Penggunaan dasar

    Pelari alat SDK dalam beta. Sisa dokumen ini mencakup implementasi alat manual.

    Mengontrol output Claude

    Memaksa penggunaan alat

    Dalam beberapa kasus, Anda mungkin ingin Claude menggunakan alat tertentu untuk menjawab pertanyaan pengguna, bahkan jika Claude berpikir dapat memberikan jawaban tanpa menggunakan alat. Anda dapat melakukan ini dengan menentukan alat di bidang tool_choice seperti ini:

    tool_choice = {"type": "tool", "name": "get_weather"}

    Saat bekerja dengan parameter tool_choice, kami memiliki empat opsi yang mungkin:

    • auto memungkinkan Claude memutuskan apakah akan memanggil alat yang disediakan atau tidak. Ini adalah nilai default ketika tools disediakan.
    • any memberitahu Claude bahwa itu harus menggunakan salah satu alat yang disediakan, tetapi tidak memaksa alat tertentu.
    • tool memungkinkan kami memaksa Claude untuk selalu menggunakan alat tertentu.
    • none mencegah Claude menggunakan alat apa pun. Ini adalah nilai default ketika tidak ada tools yang disediakan.

    Saat menggunakan prompt caching, perubahan pada parameter tool_choice akan membatalkan blok pesan yang di-cache. Definisi alat dan prompt sistem tetap di-cache, tetapi konten pesan harus diproses ulang.

    Diagram ini mengilustrasikan cara kerja setiap opsi:

    Perhatikan bahwa ketika Anda memiliki tool_choice sebagai any atau tool, kami akan mengisi pesan asisten sebelumnya untuk memaksa alat digunakan. Ini berarti bahwa model tidak akan memancarkan respons bahasa alami atau penjelasan sebelum blok konten tool_use, bahkan jika secara eksplisit diminta untuk melakukannya.

    Saat menggunakan pemikiran yang diperluas dengan penggunaan alat, tool_choice: {"type": "any"} dan tool_choice: {"type": "tool", "name": "..."} tidak didukung dan akan menghasilkan kesalahan. Hanya tool_choice: {"type": "auto"} (default) dan tool_choice: {"type": "none"} yang kompatibel dengan pemikiran yang diperluas.

    Pengujian kami menunjukkan bahwa ini tidak boleh mengurangi kinerja. Jika Anda ingin model memberikan konteks bahasa alami atau penjelasan sambil tetap meminta model menggunakan alat tertentu, Anda dapat menggunakan {"type": "auto"} untuk tool_choice (default) dan menambahkan instruksi eksplisit dalam pesan user. Misalnya: What's the weather like in London? Use the get_weather tool in your response.

    Output JSON

    Alat tidak harus berupa fungsi klien — Anda dapat menggunakan alat kapan pun Anda ingin model mengembalikan output JSON yang mengikuti skema yang disediakan. Misalnya, Anda mungkin menggunakan alat record_summary dengan skema tertentu. Lihat Penggunaan alat dengan Claude untuk contoh kerja lengkap.

    Respons model dengan alat

    Saat menggunakan alat, Claude sering kali akan berkomentar tentang apa yang dilakukannya atau merespons secara alami kepada pengguna sebelum memanggil alat.

    Misalnya, diberikan prompt "What's the weather like in San Francisco right now, and what time is it there?", Claude mungkin merespons dengan:

    JSON
    {
      "role": "assistant",
      "content": [
        {
          "type": "text",
          "text": "I'll help you check the current weather and time in San Francisco."
        },
        {
          "type": "tool_use",
          "id": "toolu_01A09q90qw90lq917835lq9",
          "name": "get_weather",
          "input": {"location": "San Francisco, CA"}
        }
      ]
    }

    Gaya respons alami ini membantu pengguna memahami apa yang dilakukan Claude dan menciptakan interaksi yang lebih percakapan. Anda dapat memandu gaya dan konten respons ini melalui prompt sistem Anda dan dengan menyediakan <examples> dalam prompt Anda.

    Penting untuk dicatat bahwa Claude dapat menggunakan berbagai frasa dan pendekatan saat menjelaskan tindakannya. Kode Anda harus memperlakukan respons ini seperti teks yang dihasilkan asisten lainnya, dan tidak mengandalkan konvensi pemformatan tertentu.

    Penggunaan alat paralel

    Secara default, Claude dapat menggunakan beberapa alat untuk menjawab kueri pengguna. Anda dapat menonaktifkan perilaku ini dengan:

    • Mengatur disable_parallel_tool_use=true ketika tipe tool_choice adalah auto, yang memastikan bahwa Claude menggunakan paling banyak satu alat
    • Mengatur disable_parallel_tool_use=true ketika tipe tool_choice adalah any atau tool, yang memastikan bahwa Claude menggunakan tepat satu alat

    Memaksimalkan penggunaan alat paralel

    Meskipun model Claude 4 memiliki kemampuan penggunaan alat paralel yang sangat baik secara default, Anda dapat meningkatkan kemungkinan eksekusi alat paralel di semua model dengan prompting yang ditargetkan:

    Penggunaan alat paralel dengan Claude Sonnet 3.7

    Claude Sonnet 3.7 mungkin kurang mungkin membuat panggilan alat paralel dalam respons, bahkan ketika Anda belum mengatur disable_parallel_tool_use. Untuk mengatasi ini, kami merekomendasikan mengaktifkan penggunaan alat yang efisien token, yang membantu mendorong Claude untuk menggunakan alat paralel. Fitur beta ini juga mengurangi latensi dan menghemat rata-rata 14% dalam token output.

    Jika Anda lebih suka tidak memilih fitur penggunaan alat yang efisien token, Anda juga dapat memperkenalkan "alat batch" yang dapat bertindak sebagai meta-alat untuk membungkus invokasi ke alat lain secara bersamaan. Kami menemukan bahwa jika alat ini ada, model akan menggunakannya untuk secara bersamaan memanggil beberapa alat secara paralel untuk Anda.

    Lihat contoh ini dalam cookbook kami untuk cara menggunakan solusi ini.

    Menangani blok konten penggunaan alat dan hasil alat

    Lebih sederhana dengan Tool runner: Penanganan alat manual yang dijelaskan di bagian ini secara otomatis dikelola oleh tool runner. Gunakan bagian ini ketika Anda memerlukan kontrol khusus atas eksekusi alat.

    Respons Claude berbeda berdasarkan apakah menggunakan alat klien atau server.

    Menangani hasil dari alat klien

    Respons akan memiliki stop_reason dari tool_use dan satu atau lebih blok konten tool_use yang mencakup:

    • id: Pengidentifikasi unik untuk blok penggunaan alat tertentu ini. Ini akan digunakan untuk mencocokkan hasil alat nanti.
    • name: Nama alat yang digunakan.
    • input: Objek yang berisi input yang diteruskan ke alat, sesuai dengan input_schema alat.

    Ketika Anda menerima respons penggunaan alat untuk alat klien, Anda harus:

    1. Ekstrak name, id, dan input dari blok tool_use.
    2. Jalankan alat aktual dalam codebase Anda yang sesuai dengan nama alat itu, meneruskan input alat.
    3. Lanjutkan percakapan dengan mengirim pesan baru dengan role dari user, dan blok content yang berisi tipe tool_result dan informasi berikut:
      • tool_use_id: id dari permintaan penggunaan alat ini adalah hasil untuk.
      • content: Hasil alat, sebagai string (misalnya "content": "15 degrees"), daftar blok konten bersarang (misalnya "content": [{"type": "text", "text": "15 degrees"}]), atau daftar blok dokumen (misalnya "content": ["type": "document", "source": {"type": "text", "media_type": "text/plain", "data": "15 degrees"}]). Blok konten ini dapat menggunakan tipe text, image, atau document.
      • is_error (opsional): Atur ke true jika eksekusi alat menghasilkan kesalahan.

    Persyaratan pemformatan penting:

    • Blok hasil alat harus segera mengikuti blok penggunaan alat yang sesuai dalam riwayat pesan. Anda tidak dapat menyertakan pesan apa pun antara pesan penggunaan alat asisten dan pesan hasil alat pengguna.
    • Dalam pesan pengguna yang berisi hasil alat, blok tool_result harus datang PERTAMA dalam array konten. Teks apa pun harus datang SETELAH semua hasil alat.

    Misalnya, ini akan menyebabkan kesalahan 400:

    {"role": "user", "content": [
      {"type": "text", "text": "Here are the results:"},  // ❌ Text before tool_result
      {"type": "tool_result", "tool_use_id": "toolu_01", ...}
    ]}

    Ini benar:

    {"role": "user", "content": [
      {"type": "tool_result", "tool_use_id": "toolu_01", ...},
      {"type": "text", "text": "What should I do next?"}  // ✅ Text after tool_result
    ]}

    Jika Anda menerima kesalahan seperti "tool_use ids were found without tool_result blocks immediately after", periksa bahwa hasil alat Anda diformat dengan benar.

    Setelah menerima hasil alat, Claude akan menggunakan informasi itu untuk terus menghasilkan respons terhadap prompt pengguna asli.

    Menangani hasil dari alat server

    Claude menjalankan alat secara internal dan menggabungkan hasil langsung ke dalam responsnya tanpa memerlukan interaksi pengguna tambahan.

    Perbedaan dari API lain

    Tidak seperti API yang memisahkan penggunaan alat atau menggunakan peran khusus seperti tool atau function, API Claude mengintegrasikan alat langsung ke dalam struktur pesan user dan assistant.

    Pesan berisi array blok text, image, tool_use, dan tool_result. Pesan user mencakup konten klien dan tool_result, sementara pesan assistant berisi konten yang dihasilkan AI dan tool_use.

    Menangani alasan penghentian max_tokens

    Jika respons Claude terpotong karena mencapai batas max_tokens, dan respons yang terpotong berisi blok penggunaan alat yang tidak lengkap, Anda perlu mencoba ulang permintaan dengan nilai max_tokens yang lebih tinggi untuk mendapatkan penggunaan alat lengkap.

    # Check if response was truncated during tool use
    if response.stop_reason == "max_tokens":
        # Check if the last content block is an incomplete tool_use
        last_block = response.content[-1]
        if last_block.type == "tool_use":
            # Send the request with higher max_tokens
            response = client.messages.create(
                model="claude-sonnet-4-5",
                max_tokens=4096,  # Increased limit
                messages=messages,
                tools=tools
            )

    Menangani alasan penghentian pause_turn

    Saat menggunakan alat server seperti pencarian web, API dapat mengembalikan alasan penghentian pause_turn, menunjukkan bahwa API telah menjeda giliran yang berjalan lama.

    Berikut adalah cara menangani alasan penghentian pause_turn:

    import anthropic
    
    client = anthropic.Anthropic()
    
    # Initial request with web search
    response = client.messages.create(
        model="claude-3-7-sonnet-latest",
        max_tokens=1024,
        messages=[
            {
                "role": "user",
                "content": "Search for comprehensive information about quantum computing breakthroughs in 2025"
            }
        ],
        tools=[{
            "type": "web_search_20250305",
            "name": "web_search",
            "max_uses": 10
        }]
    )
    
    # Check if the response has pause_turn stop reason
    if response.stop_reason == "pause_turn":
        # Continue the conversation with the paused content
        messages = [
            {"role": "user", "content": "Search for comprehensive information about quantum computing breakthroughs in 2025"},
            {"role": "assistant", "content": response.content}
        ]
    
        # Send the continuation request
        continuation = client.messages.create(
            model="claude-3-7-sonnet-latest",
            max_tokens=1024,
            messages=messages,
            tools=[{
                "type": "web_search_20250305",
                "name": "web_search",
                "max_uses": 10
            }]
        )
    
        print(continuation)
    else:
        print(response)

    Saat menangani pause_turn:

    • Lanjutkan percakapan: Teruskan respons yang dijeda apa adanya dalam permintaan berikutnya untuk membiarkan Claude melanjutkan gilirannya
    • Modifikasi jika diperlukan: Anda dapat secara opsional memodifikasi konten sebelum melanjutkan jika Anda ingin mengganggu atau mengalihkan percakapan
    • Pertahankan status alat: Sertakan alat yang sama dalam permintaan lanjutan untuk mempertahankan fungsionalitas

    Pemecahan masalah kesalahan

    Penanganan Kesalahan Bawaan: Tool runner menyediakan penanganan kesalahan otomatis untuk sebagian besar skenario umum. Bagian ini mencakup penanganan kesalahan manual untuk kasus penggunaan lanjutan.

    Ada beberapa jenis kesalahan berbeda yang dapat terjadi saat menggunakan alat dengan Claude:

    • Memilih model
    • Menentukan alat klien
    • Prompt sistem penggunaan alat
    • Praktik terbaik untuk definisi alat
    • Pelari alat (beta)
    • Penggunaan dasar
    • Mengontrol output Claude
    • Memaksa penggunaan alat
    • Output JSON
    • Respons model dengan alat
    • Penggunaan alat paralel
    • Menangani blok konten penggunaan alat dan hasil alat
    • Menangani hasil dari alat klien
    • Menangani hasil dari alat server
    • Menangani alasan penghentian
    • Pemecahan masalah kesalahan
    © 2025 ANTHROPIC PBC

    Products

    • Claude
    • Claude Code
    • Max plan
    • Team plan
    • Enterprise plan
    • Download app
    • Pricing
    • Log in

    Features

    • Claude and Slack
    • Claude in Excel

    Models

    • Opus
    • Sonnet
    • Haiku

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Claude Developer Platform

    • Overview
    • Developer docs
    • Pricing
    • Amazon Bedrock
    • Google Cloud’s Vertex AI
    • Console login

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Help and security

    • Availability
    • Status
    • Support center

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy

    Products

    • Claude
    • Claude Code
    • Max plan
    • Team plan
    • Enterprise plan
    • Download app
    • Pricing
    • Log in

    Features

    • Claude and Slack
    • Claude in Excel

    Models

    • Opus
    • Sonnet
    • Haiku

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Claude Developer Platform

    • Overview
    • Developer docs
    • Pricing
    • Amazon Bedrock
    • Google Cloud’s Vertex AI
    • Console login

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Help and security

    • Availability
    • Status
    • Support center

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    © 2025 ANTHROPIC PBC