Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Was this page helpful?
Token 計數讓您能夠在將訊息發送給 Claude 之前確定訊息中的 token 數量,幫助您對提示詞和使用量做出明智的決策。透過 token 計數,您可以
Token 計數端點接受與建立訊息相同的結構化輸入列表,包括支援系統提示詞、工具、圖片和 PDF。回應包含輸入 token 的總數。
Token 計數應被視為一個估計值。在某些情況下,建立訊息時實際使用的輸入 token 數量可能會有少量差異。
Token 計數可能包含 Anthropic 為系統優化自動添加的 token。您不會為系統添加的 token 付費。帳單僅反映您的內容。
所有活躍模型都支援 token 計數。
import anthropic
client = anthropic.Anthropic()
response = client.messages.count_tokens(
model="claude-opus-4-6",
system="You are a scientist",
messages=[{
"role": "user",
"content": "Hello, Claude"
}],
)
print(response.json()){ "input_tokens": 14 }伺服器工具的 token 計數僅適用於第一次取樣呼叫。
{ "input_tokens": 403 }{ "input_tokens": 1551 }請參閱此處了解更多關於延伸思考如何計算上下文視窗的詳細資訊
{ "input_tokens": 88 }Token 計數支援 PDF,具有與 Messages API 相同的限制。
{ "input_tokens": 2188 }Token 計數免費使用,但受到基於您的使用層級的每分鐘請求數速率限制。如果您需要更高的限制,請透過 Claude Console 聯繫銷售團隊。
| 使用層級 | 每分鐘請求數 (RPM) |
|---|---|
| 1 | 100 |
| 2 | 2,000 |
| 3 | 4,000 |
| 4 | 8,000 |
Token 計數和訊息建立具有獨立的速率限制——使用其中一個不會計入另一個的限制。
import anthropic
client = anthropic.Anthropic()
response = client.messages.count_tokens(
model="claude-opus-4-6",
tools=[
{
"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
}
},
"required": ["location"],
},
}
],
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}]
)
print(response.json())#!/bin/sh
IMAGE_URL="https://upload.wikimedia.org/wikipedia/commons/a/a7/Camponotus_flavomarginatus_ant.jpg"
IMAGE_MEDIA_TYPE="image/jpeg"
IMAGE_BASE64=$(curl "$IMAGE_URL" | base64)
curl https://api.anthropic.com/v1/messages/count_tokens \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "content-type: application/json" \
--data \
'{
"model": "claude-opus-4-6",
"messages": [
{"role": "user", "content": [
{"type": "image", "source": {
"type": "base64",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}},
{"type": "text", "text": "Describe this image"}
]}
]
}'curl https://api.anthropic.com/v1/messages/count_tokens \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "content-type: application/json" \
--header "anthropic-version: 2023-06-01" \
--data '{
"model": "claude-sonnet-4-5",
"thinking": {
"type": "enabled",
"budget_tokens": 16000
},
"messages": [
{
"role": "user",
"content": "Are there an infinite number of prime numbers such that n mod 4 == 3?"
},
{
"role": "assistant",
"content": [
{
"type": "thinking",
"thinking": "This is a nice number theory question. Lets think about it step by step...",
"signature": "EuYBCkQYAiJAgCs1le6/Pol5Z4/JMomVOouGrWdhYNsH3ukzUECbB6iWrSQtsQuRHJID6lWV..."
},
{
"type": "text",
"text": "Yes, there are infinitely many prime numbers p such that p mod 4 = 3..."
}
]
},
{
"role": "user",
"content": "Can you write a formal proof?"
}
]
}'curl https://api.anthropic.com/v1/messages/count_tokens \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "content-type: application/json" \
--header "anthropic-version: 2023-06-01" \
--data '{
"model": "claude-opus-4-6",
"messages": [{
"role": "user",
"content": [
{
"type": "document",
"source": {
"type": "base64",
"media_type": "application/pdf",
"data": "'$(base64 -i document.pdf)'"
}
},
{
"type": "text",
"text": "Please summarize this document."
}
]
}]
}'