Loading...
    • Руководство разработчика
    • Справочник API
    • MCP
    • Ресурсы
    • Примечания к выпуску
    Search...
    ⌘K
    Первые шаги
    Введение в ClaudeБыстрый старт
    Модели и цены
    Обзор моделейВыбор моделиЧто нового в Claude 4.5Миграция на Claude 4.5Устаревшие моделиЦены
    Разработка с Claude
    Обзор функцийИспользование Messages APIКонтекстные окнаЛучшие практики промптирования
    Возможности
    Кэширование промптовРедактирование контекстаРасширенное мышлениеУсилиеПотоковая передача сообщенийПакетная обработкаЦитированияМногоязычная поддержкаПодсчет токеновEmbeddingsЗрениеПоддержка PDFFiles APIРезультаты поискаСтруктурированные выходные данные
    Инструменты
    ОбзорКак реализовать использование инструментовПотоковая передача инструментов с детализациейИнструмент BashИнструмент выполнения кодаПрограммное вызывание инструментовИнструмент управления компьютеромИнструмент текстового редактораИнструмент веб-выборкиИнструмент веб-поискаИнструмент памятиИнструмент поиска инструментов
    Agent Skills
    ОбзорБыстрый стартЛучшие практикиИспользование Skills с API
    Agent SDK
    ОбзорБыстрый стартTypeScript SDKTypeScript V2 (preview)Python SDKРуководство по миграции
    MCP в API
    MCP коннекторУдаленные MCP серверы
    Claude на сторонних платформах
    Amazon BedrockMicrosoft FoundryVertex AI
    Инженерия промптов
    ОбзорГенератор промптовИспользование шаблонов промптовУлучшитель промптовБудьте ясны и прямолинейныИспользуйте примеры (многошаговое промптирование)Дайте Claude подумать (CoT)Используйте XML-тегиДайте Claude роль (системные промпты)Предзаполните ответ ClaudeЦепочка сложных промптовСоветы по длинному контекстуСоветы по расширенному мышлению
    Тестирование и оценка
    Определение критериев успехаРазработка тестовых случаевИспользование инструмента оценкиСнижение задержки
    Усиление защиты
    Снижение галлюцинацийПовышение согласованности выходных данныхСмягчение взломовПотоковые отказыСнижение утечки промптовДержите Claude в образе
    Администрирование и мониторинг
    Обзор Admin APIAPI использования и затратClaude Code Analytics API
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    Тестирование и оценка

    Создание надежных эмпирических оценок

    Узнайте, как разработать тестовые случаи для измерения производительности LLM в соответствии с вашими критериями успеха.
    • Создание оценок и тестовых случаев
    • Принципы дизайна оценок
    • Примеры оценок
    • Оценка оценок
    • Советы для оценки на основе LLM
    • Следующие шаги

    После определения критериев успеха следующим шагом является разработка оценок для измерения производительности LLM в соответствии с этими критериями. Это жизненно важная часть цикла инженерии промптов.

    Это руководство сосредоточено на том, как разработать ваши тестовые случаи.

    Создание оценок и тестовых случаев

    Принципы дизайна оценок

    1. Будьте специфичными к задаче: Разрабатывайте оценки, которые отражают распределение ваших реальных задач. Не забывайте учитывать крайние случаи!

    2. Автоматизируйте, когда это возможно: Структурируйте вопросы для автоматизированной оценки (например, множественный выбор, соответствие строк, оценка кодом, оценка LLM).
    3. Приоритет объему над качеством: Больше вопросов с немного более низким сигналом автоматизированной оценки лучше, чем меньше вопросов с высококачественными оценками, выставленными людьми вручную.

    Примеры оценок

    Написание сотен тестовых случаев может быть трудным делом вручную! Попросите Claude помочь вам сгенерировать больше из базового набора примеров тестовых случаев.
    Если вы не знаете, какие методы оценки могут быть полезны для оценки ваших критериев успеха, вы также можете провести мозговой штурм с Claude!

    Оценка оценок

    При принятии решения о том, какой метод использовать для оценки оценок, выберите самый быстрый, самый надежный, самый масштабируемый метод:

    1. Оценка на основе кода: Самая быстрая и надежная, чрезвычайно масштабируемая, но также лишена нюансов для более сложных суждений, которые требуют менее жесткой основанности на правилах.

      • Точное соответствие: output == golden_answer
      • Соответствие строки: key_phrase in output
    2. Человеческая оценка: Самая гибкая и высококачественная, но медленная и дорогая. Избегайте, если возможно.

    3. Оценка на основе LLM: Быстрая и гибкая, масштабируемая и подходящая для сложных суждений. Сначала протестируйте для обеспечения надежности, затем масштабируйте.

    Советы для оценки на основе LLM

    • Имейте подробные, четкие рубрики: "Ответ всегда должен упоминать 'Acme Inc.' в первом предложении. Если этого нет, ответ автоматически оценивается как 'неправильный'."
      Данный случай использования, или даже конкретный критерий успеха для этого случая использования, может потребовать несколько рубрик для целостной оценки.
    • Эмпирический или конкретный: Например, проинструктируйте LLM выводить только 'правильно' или 'неправильно', или судить по шкале от 1 до 5. Чисто качественные оценки трудно оценить быстро и в масштабе.
    • Поощряйте рассуждения: Попросите LLM сначала подумать перед принятием решения об оценочном балле, а затем отбросьте рассуждения. Это повышает производительность оценки, особенно для задач, требующих сложного суждения.

    Следующие шаги

    Мозговой штурм оценок

    Узнайте, как создавать промпты, которые максимизируют ваши баллы оценки.

    Поваренная книга оценок

    Больше примеров кода оценок, оцениваемых людьми, кодом и LLM.