Loading...
    • Developer Guide
    • API Reference
    • MCP
    • Resources
    • Release Notes
    Search...
    ⌘K
    First steps
    Intro to ClaudeQuickstart
    Models & pricing
    Models overviewChoosing a modelWhat's new in Claude 4.5Migrating to Claude 4.5Model deprecationsPricing
    Build with Claude
    Features overviewUsing the Messages APIContext windowsPrompting best practices
    Capabilities
    Prompt cachingContext editingExtended thinkingEffortStreaming MessagesBatch processingCitationsMultilingual supportToken countingEmbeddingsVisionPDF supportFiles APISearch resultsStructured outputs
    Tools
    OverviewHow to implement tool useFine-grained tool streamingBash toolCode execution toolProgrammatic tool callingComputer use toolText editor toolWeb fetch toolWeb search toolMemory toolTool search tool
    Agent Skills
    OverviewQuickstartBest practicesUsing Skills with the API
    Agent SDK
    OverviewQuickstartTypeScript SDKTypeScript V2 (preview)Python SDKMigration Guide
    Streaming InputHandling PermissionsControl execution with hooksSession ManagementFile checkpointingStructured outputs in the SDKHosting the Agent SDKSecurely deploying AI agentsModifying system promptsMCP in the SDKCustom ToolsSubagents in the SDKSlash Commands in the SDKAgent Skills in the SDKTracking Costs and UsageTodo ListsPlugins in the SDK
    MCP in the API
    MCP connectorRemote MCP servers
    Claude on 3rd-party platforms
    Amazon BedrockMicrosoft FoundryVertex AI
    Prompt engineering
    OverviewPrompt generatorUse prompt templatesPrompt improverBe clear and directUse examples (multishot prompting)Let Claude think (CoT)Use XML tagsGive Claude a role (system prompts)Prefill Claude's responseChain complex promptsLong context tipsExtended thinking tips
    Test & evaluate
    Define success criteriaDevelop test casesUsing the Evaluation ToolReducing latency
    Strengthen guardrails
    Reduce hallucinationsIncrease output consistencyMitigate jailbreaksStreaming refusalsReduce prompt leakKeep Claude in character
    Administration and monitoring
    Admin API overviewUsage and Cost APIClaude Code Analytics API
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    Guides

    Tracking Costs and Usage

    Understand and track token usage for billing in the Claude Agent SDK

    SDK Cost Tracking

    The Claude Agent SDK provides detailed token usage information for each interaction with Claude. This guide explains how to properly track costs and understand usage reporting, especially when dealing with parallel tool uses and multi-step conversations.

    For complete API documentation, see the TypeScript SDK reference.

    Understanding Token Usage

    When Claude processes requests, it reports token usage at the message level. This usage data is essential for tracking costs and billing users appropriately.

    Key Concepts

    1. Steps: A step is a single request/response pair between your application and Claude
    2. Messages: Individual messages within a step (text, tool uses, tool results)
    3. Usage: Token consumption data attached to assistant messages

    Usage Reporting Structure

    Single vs Parallel Tool Use

    When Claude executes tools, the usage reporting differs based on whether tools are executed sequentially or in parallel:

    import { query } from "@anthropic-ai/claude-agent-sdk";
    
    // Example: Tracking usage in a conversation
    const result = await query({
      prompt: "Analyze this codebase and run tests",
      options: {
        onMessage: (message) => {
          if (message.type === 'assistant' && message.usage) {
            console.log(`Message ID: ${message.id}`);
            console.log(`Usage:`, message.usage);
          }
        }
      }
    });

    Message Flow Example

    Here's how messages and usage are reported in a typical multi-step conversation:

    <!-- Step 1: Initial request with parallel tool uses -->
    assistant (text)      { id: "msg_1", usage: { output_tokens: 100, ... } }
    assistant (tool_use)  { id: "msg_1", usage: { output_tokens: 100, ... } }
    assistant (tool_use)  { id: "msg_1", usage: { output_tokens: 100, ... } }
    assistant (tool_use)  { id: "msg_1", usage: { output_tokens: 100, ... } }
    user (tool_result)
    user (tool_result)
    user (tool_result)
    
    <!-- Step 2: Follow-up response -->
    assistant (text)      { id: "msg_2", usage: { output_tokens: 98, ... } }

    Important Usage Rules

    1. Same ID = Same Usage

    All messages with the same id field report identical usage. When Claude sends multiple messages in the same turn (e.g., text + tool uses), they share the same message ID and usage data.

    // All these messages have the same ID and usage
    const messages = [
      { type: 'assistant', id: 'msg_123', usage: { output_tokens: 100 } },
      { type: 'assistant', id: 'msg_123', usage: { output_tokens: 100 } },
      { type: 'assistant', id: 'msg_123', usage: { output_tokens: 100 } }
    ];
    
    // Charge only once per unique message ID
    const uniqueUsage = messages[0].usage; // Same for all messages with this ID

    2. Charge Once Per Step

    You should only charge users once per step, not for each individual message. When you see multiple assistant messages with the same ID, use the usage from any one of them.

    3. Result Message Contains Cumulative Usage

    The final result message contains the total cumulative usage from all steps in the conversation:

    // Final result includes total usage
    const result = await query({
      prompt: "Multi-step task",
      options: { /* ... */ }
    });
    
    console.log("Total usage:", result.usage);
    console.log("Total cost:", result.usage.total_cost_usd);

    Implementation: Cost Tracking System

    Here's a complete example of implementing a cost tracking system:

    import { query } from "@anthropic-ai/claude-agent-sdk";
    
    class CostTracker {
      private processedMessageIds = new Set<string>();
      private stepUsages: Array<any> = [];
      
      async trackConversation(prompt: string) {
        const result = await query({
          prompt,
          options: {
            onMessage: (message) => {
              this.processMessage(message);
            }
          }
        });
        
        return {
          result,
          stepUsages: this.stepUsages,
          totalCost: result.usage?.total_cost_usd || 0
        };
      }
      
      private processMessage(message: any) {
        // Only process assistant messages with usage
        if (message.type !== 'assistant' || !message.usage) {
          return;
        }
        
        // Skip if we've already processed this message ID
        if (this.processedMessageIds.has(message.id)) {
          return;
        }
        
        // Mark as processed and record usage
        this.processedMessageIds.add(message.id);
        this.stepUsages.push({
          messageId: message.id,
          timestamp: new Date().toISOString(),
          usage: message.usage,
          costUSD: this.calculateCost(message.usage)
        });
      }
      
      private calculateCost(usage: any): number {
        // Implement your pricing calculation here
        // This is a simplified example
        const inputCost = usage.input_tokens * 0.00003;
        const outputCost = usage.output_tokens * 0.00015;
        const cacheReadCost = (usage.cache_read_input_tokens || 0) * 0.0000075;
        
        return inputCost + outputCost + cacheReadCost;
      }
    }
    
    // Usage
    const tracker = new CostTracker();
    const { result, stepUsages, totalCost } = await tracker.trackConversation(
      "Analyze and refactor this code"
    );
    
    console.log(`Steps processed: ${stepUsages.length}`);
    console.log(`Total cost: $${totalCost.toFixed(4)}`);

    Handling Edge Cases

    Output Token Discrepancies

    In rare cases, you might observe different output_tokens values for messages with the same ID. When this occurs:

    1. Use the highest value - The final message in a group typically contains the accurate total
    2. Verify against total cost - The total_cost_usd in the result message is authoritative
    3. Report inconsistencies - File issues at the Claude Code GitHub repository

    Cache Token Tracking

    When using prompt caching, track these token types separately:

    interface CacheUsage {
      cache_creation_input_tokens: number;
      cache_read_input_tokens: number;
      cache_creation: {
        ephemeral_5m_input_tokens: number;
        ephemeral_1h_input_tokens: number;
      };
    }

    Best Practices

    1. Use Message IDs for Deduplication: Always track processed message IDs to avoid double-charging
    2. Monitor the Result Message: The final result contains authoritative cumulative usage
    3. Implement Logging: Log all usage data for auditing and debugging
    4. Handle Failures Gracefully: Track partial usage even if a conversation fails
    5. Consider Streaming: For streaming responses, accumulate usage as messages arrive

    Usage Fields Reference

    Each usage object contains:

    • input_tokens: Base input tokens processed
    • output_tokens: Tokens generated in the response
    • cache_creation_input_tokens: Tokens used to create cache entries
    • cache_read_input_tokens: Tokens read from cache
    • service_tier: The service tier used (e.g., "standard")
    • total_cost_usd: Total cost in USD (only in result message)

    Example: Building a Billing Dashboard

    Here's how to aggregate usage data for a billing dashboard:

    class BillingAggregator {
      private userUsage = new Map<string, {
        totalTokens: number;
        totalCost: number;
        conversations: number;
      }>();
      
      async processUserRequest(userId: string, prompt: string) {
        const tracker = new CostTracker();
        const { result, stepUsages, totalCost } = await tracker.trackConversation(prompt);
        
        // Update user totals
        const current = this.userUsage.get(userId) || {
          totalTokens: 0,
          totalCost: 0,
          conversations: 0
        };
        
        const totalTokens = stepUsages.reduce((sum, step) => 
          sum + step.usage.input_tokens + step.usage.output_tokens, 0
        );
        
        this.userUsage.set(userId, {
          totalTokens: current.totalTokens + totalTokens,
          totalCost: current.totalCost + totalCost,
          conversations: current.conversations + 1
        });
        
        return result;
      }
      
      getUserBilling(userId: string) {
        return this.userUsage.get(userId) || {
          totalTokens: 0,
          totalCost: 0,
          conversations: 0
        };
      }
    }

    Related Documentation

    • TypeScript SDK Reference - Complete API documentation
    • SDK Overview - Getting started with the SDK
    • SDK Permissions - Managing tool permissions
    • Understanding Token Usage
    • Key Concepts
    • Usage Reporting Structure
    • Single vs Parallel Tool Use
    • Message Flow Example
    • Important Usage Rules
    • 1. Same ID = Same Usage
    • 2. Charge Once Per Step
    • 3. Result Message Contains Cumulative Usage
    • Implementation: Cost Tracking System
    • Handling Edge Cases
    • Output Token Discrepancies
    • Cache Token Tracking
    • Best Practices
    • Usage Fields Reference
    • Example: Building a Billing Dashboard
    • Related Documentation