Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Token 计数使您能够在将消息发送给 Claude 之前确定消息中的 token 数量,帮助您对提示和使用做出明智的决策。通过 token 计数,您可以
token 计数端点接受与创建消息相同的结构化输入列表,包括支持系统提示、工具、图像和 PDF。响应包含输入 token 的总数。
token 计数应被视为估计值。在某些情况下,创建消息时使用的实际输入 token 数量可能会有少量差异。
Token 计数可能包括 Anthropic 为系统优化自动添加的 token。您不会为系统添加的 token 付费。计费仅反映您的内容。
所有活跃模型都支持 token 计数。
import anthropic
client = anthropic.Anthropic()
response = client.messages.count_tokens(
model="claude-sonnet-4-5",
system="You are a scientist",
messages=[{
"role": "user",
"content": "Hello, Claude"
}],
)
print(response.json()){ "input_tokens": 14 }服务器工具 token 计数仅适用于第一次采样调用。
{ "input_tokens": 403 }{ "input_tokens": 1551 }请参阅这里了解更多关于扩展思考如何计算上下文窗口的详细信息
{ "input_tokens": 88 }Token 计数支持 PDF,具有与 Messages API 相同的限制。
{ "input_tokens": 2188 }Token 计数免费使用,但受基于您的使用层级的每分钟请求数速率限制。如果您需要更高的限制,请通过 Claude Console 联系销售。
| 使用层级 | 每分钟请求数 (RPM) |
|---|---|
| 1 | 100 |
| 2 | 2,000 |
| 3 | 4,000 |
| 4 | 8,000 |
Token 计数和消息创建具有独立的速率限制——使用其中一个不会计入另一个的限制。
import anthropic
client = anthropic.Anthropic()
response = client.messages.count_tokens(
model="claude-sonnet-4-5",
tools=[
{
"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
}
},
"required": ["location"],
},
}
],
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}]
)
print(response.json())#!/bin/sh
IMAGE_URL="https://upload.wikimedia.org/wikipedia/commons/a/a7/Camponotus_flavomarginatus_ant.jpg"
IMAGE_MEDIA_TYPE="image/jpeg"
IMAGE_BASE64=$(curl "$IMAGE_URL" | base64)
curl https://api.anthropic.com/v1/messages/count_tokens \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "anthropic-version: 2023-06-01" \
--header "content-type: application/json" \
--data \
'{
"model": "claude-sonnet-4-5",
"messages": [
{"role": "user", "content": [
{"type": "image", "source": {
"type": "base64",
"media_type": "'$IMAGE_MEDIA_TYPE'",
"data": "'$IMAGE_BASE64'"
}},
{"type": "text", "text": "Describe this image"}
]}
]
}'curl https://api.anthropic.com/v1/messages/count_tokens \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "content-type: application/json" \
--header "anthropic-version: 2023-06-01" \
--data '{
"model": "claude-sonnet-4-5",
"thinking": {
"type": "enabled",
"budget_tokens": 16000
},
"messages": [
{
"role": "user",
"content": "Are there an infinite number of prime numbers such that n mod 4 == 3?"
},
{
"role": "assistant",
"content": [
{
"type": "thinking",
"thinking": "This is a nice number theory question. Lets think about it step by step...",
"signature": "EuYBCkQYAiJAgCs1le6/Pol5Z4/JMomVOouGrWdhYNsH3ukzUECbB6iWrSQtsQuRHJID6lWV..."
},
{
"type": "text",
"text": "Yes, there are infinitely many prime numbers p such that p mod 4 = 3..."
}
]
},
{
"role": "user",
"content": "Can you write a formal proof?"
}
]
}'curl https://api.anthropic.com/v1/messages/count_tokens \
--header "x-api-key: $ANTHROPIC_API_KEY" \
--header "content-type: application/json" \
--header "anthropic-version: 2023-06-01" \
--data '{
"model": "claude-sonnet-4-5",
"messages": [{
"role": "user",
"content": [
{
"type": "document",
"source": {
"type": "base64",
"media_type": "application/pdf",
"data": "'$(base64 -i document.pdf)'"
}
},
{
"type": "text",
"text": "Please summarize this document."
}
]
}]
}'