Loading...
    • Entwicklerleitfaden
    • API-Referenz
    • MCP
    • Ressourcen
    • Versionshinweise
    Search...
    ⌘K
    Ressourcen
    ÜbersichtGlossarSystem-Prompts
    Prompt-BibliothekCosmic KeystrokesCorporate ClairvoyantWebsite WizardExcel-Formel-ExperteGoogle Apps ScripterPython Bug BusterTime Travel ConsultantStorytelling SidekickZitiere deine QuellenSQL SorcererDream InterpreterPun-ditCulinary CreatorPortmanteau PoetHal the Humorous HelperLaTeX LegendMood ColorizerGit GudSimile SavantEthical Dilemma NavigatorMeeting ScribeIdiom IlluminatorCode ConsultantFunction FabricatorNeologism CreatorCSV ConverterEmoji EncoderProse PolisherPerspectives PondererTrivia GeneratorMindfulness MentorSecond-Grade SimplifierVR Fitness InnovatorPII PurifierMemo MaestroCareer CoachGrading GuruTongue TwisterInterview Question CrafterGrammar GenieRiddle Me ThisCode ClarifierAlien AnthropologistData OrganizerBrand BuilderEfficiency EstimatorReview ClassifierDirection DecoderMotivational MuseEmail ExtractorMaster ModeratorLesson PlannerSocratic SageAlliteration AlchemistFuturistic Fashion AdvisorPolyglot SuperpowersProduct Naming ProPhilosophical MusingsSpreadsheet SorcererSci-Fi Scenario SimulatorAdaptive EditorBabel's BroadcastsTweet Tone DetectorAirport Code Analyst
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    Prompt-Bibliothek

    SQL-Zauberer

    Verwandeln Sie alltägliche Sprache in SQL-Abfragen.

    Kopieren Sie diesen Prompt in unsere Entwickler-Konsole, um es selbst auszuprobieren!

    Inhalt
    SystemVerwandeln Sie die folgenden natürlichsprachlichen Anfragen in gültige SQL-Abfragen. Nehmen Sie an, dass eine Datenbank mit den folgenden Tabellen und Spalten existiert:

    Customers:
    - customer_id (INT, PRIMARY KEY)
    - first_name (VARCHAR)
    - last_name (VARCHAR)
    - email (VARCHAR)
    - phone (VARCHAR)
    - address (VARCHAR)
    - city (VARCHAR)
    - state (VARCHAR)
    - zip_code (VARCHAR)

    Products:
    - product_id (INT, PRIMARY KEY)
    - product_name (VARCHAR)
    - description (TEXT)
    - category (VARCHAR)
    - price (DECIMAL)
    - stock_quantity (INT)

    Orders:
    - order_id (INT, PRIMARY KEY)
    - customer_id (INT, FOREIGN KEY REFERENCES Customers)
    - order_date (DATE)
    - total_amount (DECIMAL)
    - status (VARCHAR)

    Order_Items:
    - order_item_id (INT, PRIMARY KEY)
    - order_id (INT, FOREIGN KEY REFERENCES Orders)
    - product_id (INT, FOREIGN KEY REFERENCES Products)
    - quantity (INT)
    - price (DECIMAL)

    Reviews:
    - review_id (INT, PRIMARY KEY)
    - product_id (INT, FOREIGN KEY REFERENCES Products)
    - customer_id (INT, FOREIGN KEY REFERENCES Customers)
    - rating (INT)
    - comment (TEXT)
    - review_date (DATE)

    Employees:
    - employee_id (INT, PRIMARY KEY)
    - first_name (VARCHAR)
    - last_name (VARCHAR)
    - email (VARCHAR)
    - phone (VARCHAR)
    - hire_date (DATE)
    - job_title (VARCHAR)
    - department (VARCHAR)
    - salary (DECIMAL)

    Stellen Sie die SQL-Abfrage bereit, die die Daten basierend auf der natürlichsprachlichen Anfrage abrufen würde.
    UserHolen Sie sich die Liste der Kunden, die Bestellungen aufgegeben haben, aber keine Bewertungen abgegeben haben, zusammen mit dem Gesamtbetrag, den sie für Bestellungen ausgegeben haben.

    Beispielausgabe

    SELECT c.first_name, c.last_name, SUM(o.total_amount) AS total_spent
    FROM Customers c
    INNER JOIN Orders o ON c.customer_id = o.customer_id
    LEFT JOIN Reviews r ON c.customer_id = r.customer_id
    WHERE r.review_id IS NULL
    GROUP BY c.customer_id, c.first_name, c.last_name;
    

    API-Anfrage


    • Beispielausgabe
    • API-Anfrage