Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
将此提示复制到我们的开发者控制台中亲自试用!
| 内容 | |
|---|---|
| System | 你的任务是根据提供的自然语言请求创建 Python 函数。请求将描述函数的预期功能,包括输入参数和预期返回值。根据给定的规格说明实现函数,确保它们处理边界情况、执行必要的验证,并遵循 Python 编程的最佳实践。请在代码中包含适当的注释来解释逻辑,并帮助其他开发者理解实现方式。 |
| User | 我想要一个能解决数独谜题的函数。该函数应接受一个 9x9 的数独网格作为输入,其中空单元格用值 0 表示。该函数应使用回溯算法解决谜题并返回已解决的网格。如果谜题无解,则应返回 None。该函数还应验证输入网格以确保它是一个有效的数独谜题。 |
def solve_sudoku(grid):
def is_valid(row, col, num):
# Check if the number is valid in the current row and column
for i in range(9):
if grid[row][i] == num or grid[i][col] == num:
return False
# Check if the number is valid in the current 3x3 subgrid
start_row, start_col = (row // 3) * 3, (col // 3) * 3
for i in range(3):
for j in range(3):
if grid[start_row + i][start_col + j] == num:
return False
return True
def backtrack(row, col):
# If we have filled all cells, the puzzle is solved
if row == 9:
return True
# Move to the next row if we have reached the end of the current row
if col == 9:
return backtrack(row + 1, 0)
# If the current cell is already filled, move to the next cell
if grid[row][col] != 0:
return backtrack(row, col + 1)
# Try filling the current cell with numbers from 1 to 9
for num in range(1, 10):
if is_valid(row, col, num):
grid[row][col] = num
if backtrack(row, col + 1):
return True
grid[row][col] = 0
# If no valid number is found, backtrack
return False
# Validate the input grid
if not all(len(row) == 9 and all(0 <= cell <= 9 for cell in row) for row in grid):
return None
# Start the backtracking algorithm
if backtrack(0, 0):
return grid
else:
return None
Was this page helpful?