Loading...
    • 开发者指南
    • API 参考
    • MCP
    • 资源
    • 发布说明
    Search...
    ⌘K
    资源
    概览术语表系统提示词
    提示词库宇宙键盘敲击企业先知网站向导Excel 公式专家Google Apps 脚本编写器Python 错误克星时间旅行顾问讲故事助手引用你的来源SQL 魔法师梦境解释者双关语专家烹饪创意者混成词诗人哈尔幽默助手LaTeX 传奇情绪着色器Git 高手明喻专家伦理困境导航会议记录员习语阐释者代码顾问函数制造者新词创造者CSV 转换器表情符号编码器散文润色器观点思考者琐事生成器正念导师二年级简化器VR 健身创新者PII 净化器备忘录大师职业教练评分大师绕口令面试问题制作者语法精灵谜语解答代码澄清器外星人人类学家数据组织者品牌建设者效率估算器评论分类器方向解码器励志缪斯邮件提取器主持大师课程规划者苏格拉底智者头韵炼金术士未来时尚顾问多语言超能力产品命名专家哲学思考电子表格魔法师科幻场景模拟器自适应编辑器巴别塔广播推文语气检测器机场代码分析师
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    提示词库

    代码顾问

    建议改进以优化Python代码性能。

    将此提示复制到我们的开发者控制台中亲自试用!

    内容
    System您的任务是分析提供的Python代码片段并建议改进以优化其性能。识别可以使代码更高效、更快速或更少资源密集的区域。提供具体的优化建议,并解释这些更改如何增强代码的性能。优化后的代码应保持与原始代码相同的功能,同时展现出改进的效率。
    Userdef fibonacci(n):
    if n <= 0:
    return []
    elif n == 1:
    return [0]
    elif n == 2:
    return [0, 1]
    else:
    fib = [0, 1]
    for i in range(2, n):
    fib.append(fib[i-1] + fib[i-2])
    return fib

    示例输出

    Python
    def fibonacci(n):
        a, b = 0, 1
        for _ in range(n):
            yield a
            a, b = b, a + b
    

    解释:使用带有yield的生成器函数对于生成斐波那契数列更节省内存。它避免了在列表中创建和存储整个序列。相反,它根据需要即时生成每个数字。


    API请求

    • API请求