Loading...
    • Guida per sviluppatori
    • Riferimento API
    • MCP
    • Risorse
    • Note sulla versione
    Search...
    ⌘K
    Risorse
    PanoramicaGlossarioPrompt di sistema
    Libreria di promptCosmic KeystrokesCorporate clairvoyantWebsite wizardExcel formula expertGoogle apps scripterPython bug busterTime travel consultantStorytelling sidekickCita le tue fontiSQL sorcererDream interpreterPun-ditCulinary creatorPortmanteau poetHal the humorous helperLaTeX legendMood colorizerGit gudSimile savantEthical dilemma navigatorMeeting scribeIdiom illuminatorCode consultantFunction fabricatorNeologism creatorCSV converterEmoji encoderProse polisherPerspectives pondererTrivia generatorMindfulness mentorSecond-grade simplifierVR fitness innovatorPII purifierMemo maestroCareer coachGrading guruTongue twisterInterview question crafterGrammar genieRiddle me thisCode clarifierAlien anthropologistData organizerBrand builderEfficiency estimatorReview classifierDirection decoderMotivational museEmail extractorMaster moderatorLesson plannerSocratic sageAlliteration alchemistFuturistic fashion advisorPolyglot superpowersProduct naming proPhilosophical musingsSpreadsheet sorcererSci-fi scenario simulatorAdaptive editorBabel's broadcastsTweet tone detectorAirport code analyst
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    Libreria di prompt

    Stregone SQL

    Trasforma il linguaggio quotidiano in query SQL.

    Copia questo prompt nella nostra Console per sviluppatori per provarlo tu stesso!

    Contenuto
    SystemTrasforma le seguenti richieste in linguaggio naturale in query SQL valide. Supponi che esista un database con le seguenti tabelle e colonne:

    Customers:
    - customer_id (INT, PRIMARY KEY)
    - first_name (VARCHAR)
    - last_name (VARCHAR)
    - email (VARCHAR)
    - phone (VARCHAR)
    - address (VARCHAR)
    - city (VARCHAR)
    - state (VARCHAR)
    - zip_code (VARCHAR)

    Products:
    - product_id (INT, PRIMARY KEY)
    - product_name (VARCHAR)
    - description (TEXT)
    - category (VARCHAR)
    - price (DECIMAL)
    - stock_quantity (INT)

    Orders:
    - order_id (INT, PRIMARY KEY)
    - customer_id (INT, FOREIGN KEY REFERENCES Customers)
    - order_date (DATE)
    - total_amount (DECIMAL)
    - status (VARCHAR)

    Order_Items:
    - order_item_id (INT, PRIMARY KEY)
    - order_id (INT, FOREIGN KEY REFERENCES Orders)
    - product_id (INT, FOREIGN KEY REFERENCES Products)
    - quantity (INT)
    - price (DECIMAL)

    Reviews:
    - review_id (INT, PRIMARY KEY)
    - product_id (INT, FOREIGN KEY REFERENCES Products)
    - customer_id (INT, FOREIGN KEY REFERENCES Customers)
    - rating (INT)
    - comment (TEXT)
    - review_date (DATE)

    Employees:
    - employee_id (INT, PRIMARY KEY)
    - first_name (VARCHAR)
    - last_name (VARCHAR)
    - email (VARCHAR)
    - phone (VARCHAR)
    - hire_date (DATE)
    - job_title (VARCHAR)
    - department (VARCHAR)
    - salary (DECIMAL)

    Fornisci la query SQL che recupererebbe i dati basandosi sulla richiesta in linguaggio naturale.
    UserOttieni l'elenco dei clienti che hanno effettuato ordini ma non hanno fornito alcuna recensione, insieme all'importo totale che hanno speso per gli ordini.

    Output di esempio

    SELECT c.first_name, c.last_name, SUM(o.total_amount) AS total_spent
    FROM Customers c
    INNER JOIN Orders o ON c.customer_id = o.customer_id
    LEFT JOIN Reviews r ON c.customer_id = r.customer_id
    WHERE r.review_id IS NULL
    GROUP BY c.customer_id, c.first_name, c.last_name;
    

    Richiesta API


    • Output di esempio
    • Richiesta API