Loading...
    • 开发者指南
    • API 参考
    • MCP
    • 资源
    • 更新日志
    Search...
    ⌘K
    资源
    概览术语表系统提示词
    概览工单路由客户支持智能体内容审核法律摘要
    Console
    Log in
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...
    Loading...

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Partners

    • Amazon Bedrock
    • Google Cloud's Vertex AI

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Learn

    • Blog
    • Catalog
    • Courses
    • Use cases
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Help and security

    • Availability
    • Status
    • Support
    • Discord

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    使用场景

    工单路由

    本指南介绍如何利用 Claude 先进的自然语言理解能力,根据客户意图、紧急程度、优先级、客户画像等因素,大规模分类客户支持工单。

    确定是否使用 Claude 进行工单路由

    以下是一些关键指标,表明您应该使用像 Claude 这样的 LLM 而非传统 ML 方法来完成分类任务:


    构建和部署您的 LLM 支持工作流

    了解您当前的支持方式

    在深入自动化之前,了解您现有的工单系统至关重要。首先调查您的支持团队当前如何处理工单路由。

    考虑以下问题:

    • 使用什么标准来确定应用哪种 SLA/服务方案?
    • 工单路由是否用于确定工单应发送到哪个支持层级或产品专家?
    • 是否已有自动化规则或工作流?在哪些情况下它们会失败?
    • 如何处理边缘情况或模糊工单?
    • 团队如何确定工单优先级?

    您越了解人工处理某些情况的方式,就越能更好地与 Claude 协作完成任务。

    定义用户意图类别

    一个定义明确的用户意图类别列表对于使用 Claude 准确分类支持工单至关重要。Claude 在您系统中有效路由工单的能力与您系统类别的定义程度直接成正比。

    以下是一些用户意图类别和子类别的示例。

    除了意图之外,工单路由和优先级排序还可能受到其他因素的影响,如紧急程度、客户类型、SLA 或语言。在构建自动化路由系统时,请务必考虑其他路由标准。

    建立成功标准

    与您的支持团队合作,定义明确的成功标准,包含可衡量的基准、阈值和目标。

    以下是使用 LLM 进行支持工单路由时的一些标准指标和基准:

    以下是一些无论是否使用 LLM 都可能有用的常见成功标准:

    选择合适的 Claude 模型

    模型的选择取决于成本、准确性和响应时间之间的权衡。

    许多客户发现 claude-haiku-4-5-20251001 是工单路由的理想模型,因为它是 Claude 4 系列中最快、最具成本效益的模型,同时仍能提供出色的结果。如果您的分类问题需要深厚的专业知识或大量意图类别的复杂推理,您可以选择更大的 Sonnet 模型。

    构建强大的提示

    工单路由是一种分类任务。Claude 分析支持工单的内容,并根据问题类型、紧急程度、所需专业知识或其他相关因素将其分类到预定义的类别中。

    让我们编写一个工单分类提示。我们的初始提示应包含用户请求的内容,并返回推理和意图。

    在 Claude Console 上尝试提示生成器,让 Claude 为您编写初稿。

    以下是一个工单路由分类提示的示例:

    def classify_support_request(ticket_contents):
        # Define the prompt for the classification task
        classification_prompt = f"""You will be acting as a customer support ticket classification system. Your task is to analyze customer support requests and output the appropriate classification intent for each request, along with your reasoning. 
    
            Here is the customer support request you need to classify:
    
            <request>{ticket_contents}</request>
    
            Please carefully analyze the above request to determine the customer's core intent and needs. Consider what the customer is asking for has concerns about.
    
            First, write out your reasoning and analysis of how to classify this request inside <reasoning> tags.
    
            Then, output the appropriate classification label for the request inside a <intent> tag. The valid intents are:
            <intents>
            <intent>Support, Feedback, Complaint</intent>
            <intent>Order Tracking</intent>
            <intent>Refund/Exchange</intent>
            </intents>
    
            A request may have ONLY ONE applicable intent. Only include the intent that is most applicable to the request.
    
            As an example, consider the following request:
            <request>Hello! I had high-speed fiber internet installed on Saturday and my installer, Kevin, was absolutely fantastic! Where can I send my positive review? Thanks for your help!</request>
    
            Here is an example of how your output should be formatted (for the above example request):
            <reasoning>The user seeks information in order to leave positive feedback.</reasoning>
            <intent>Support, Feedback, Complaint</intent>
    
            Here are a few more examples:
            <examples>
            <example 2>
            Example 2 Input:
            <request>I wanted to write and personally thank you for the compassion you showed towards my family during my father's funeral this past weekend. Your staff was so considerate and helpful throughout this whole process; it really took a load off our shoulders. The visitation brochures were beautiful. We'll never forget the kindness you showed us and we are so appreciative of how smoothly the proceedings went. Thank you, again, Amarantha Hill on behalf of the Hill Family.</request>
    
            Example 2 Output:
            <reasoning>User leaves a positive review of their experience.</reasoning>
            <intent>Support, Feedback, Complaint</intent>
            </example 2>
            <example 3>
    
            ...
    
            </example 8>
            <example 9>
            Example 9 Input:
            <request>Your website keeps sending ad-popups that block the entire screen. It took me twenty minutes just to finally find the phone number to call and complain. How can I possibly access my account information with all of these popups? Can you access my account for me, since your website is broken? I need to know what the address is on file.</request>
    
            Example 9 Output:
            <reasoning>The user requests help accessing their web account information.</reasoning>
            <intent>Support, Feedback, Complaint</intent>
            </example 9>
    
            Remember to always include your classification reasoning before your actual intent output. The reasoning should be enclosed in <reasoning> tags and the intent in <intent> tags. Return only the reasoning and the intent.
            """

    让我们分解这个提示的关键组成部分:

    • 我们使用 Python f-string 创建提示模板,允许将 ticket_contents 插入到 <request> 标签中。
    • 我们给 Claude 一个明确定义的角色,作为一个分类系统,仔细分析工单内容以确定客户的核心意图和需求。
    • 我们指导 Claude 正确的输出格式,在本例中是在 <reasoning> 标签内提供其推理和分析,然后在 <intent> 标签内提供适当的分类标签。
    • 我们指定了有效的意图类别:"Support, Feedback, Complaint"、"Order Tracking" 和 "Refund/Exchange"。
    • 我们包含了一些示例(即少样本提示),以说明输出应如何格式化,这提高了准确性和一致性。

    我们希望 Claude 将其响应拆分为各个 XML 标签部分的原因是,我们可以使用正则表达式分别从输出中提取推理和意图。这使我们能够在工单路由工作流中创建有针对性的后续步骤,例如仅使用意图来决定将工单路由给哪个人。

    部署您的提示

    在测试生产环境中部署并运行评估之前,很难知道您的提示效果如何。

    让我们构建部署结构。首先定义包装我们对 Claude 调用的方法签名。我们将使用已经开始编写的方法,以 ticket_contents 作为输入,现在返回 reasoning 和 intent 的元组作为输出。如果您有使用传统 ML 的现有自动化,您需要遵循该方法签名。

    import anthropic
    import re
    
    # Create an instance of the Claude API client
    client = anthropic.Anthropic()
    
    # Set the default model
    DEFAULT_MODEL="claude-haiku-4-5-20251001"
    
    def classify_support_request(ticket_contents):
        # Define the prompt for the classification task
        classification_prompt = f"""You will be acting as a customer support ticket classification system. 
            ...
            ... The reasoning should be enclosed in <reasoning> tags and the intent in <intent> tags. Return only the reasoning and the intent.
            """
        # Send the prompt to the API to classify the support request.
        message = client.messages.create(
            model=DEFAULT_MODEL,
            max_tokens=500,
            temperature=0,
            messages=[{"role": "user", "content": classification_prompt}],
            stream=False,
        )
        reasoning_and_intent = message.content[0].text
    
        # Use Python's regular expressions library to extract `reasoning`.
        reasoning_match = re.search(
            r"<reasoning>(.*?)</reasoning>", reasoning_and_intent, re.DOTALL
        )
        reasoning = reasoning_match.group(1).strip() if reasoning_match else ""
    
        # Similarly, also extract the `intent`.
        intent_match = re.search(r"<intent>(.*?)</intent>", reasoning_and_intent, re.DOTALL)
        intent = intent_match.group(1).strip() if intent_match else ""
    
        return reasoning, intent

    这段代码:

    • 导入 Anthropic 库并使用您的 API 密钥创建客户端实例。
    • 定义一个 classify_support_request 函数,接受一个 ticket_contents 字符串。
    • 使用 classification_prompt 将 ticket_contents 发送给 Claude 进行分类。
    • 从响应中提取模型的 reasoning 和 intent 并返回。

    由于我们需要等待整个推理和意图文本生成完毕后再进行解析,我们设置 stream=False(默认值)。


    评估您的提示

    提示通常需要测试和优化才能达到生产就绪状态。要确定解决方案的就绪程度,请根据您之前建立的成功标准和阈值评估性能。

    要运行评估,您需要测试用例。本指南的其余部分假设您已经开发了测试用例。

    构建评估函数

    本指南的示例评估从三个关键指标衡量 Claude 的性能:

    • 准确率
    • 每次分类成本

    根据对您重要的因素,您可能需要在其他维度上评估 Claude。

    为了评估这些,我们首先需要修改编写的脚本,添加一个函数来比较预测意图与实际意图,并计算正确预测的百分比。我们还需要添加成本计算和时间测量功能。

    import anthropic
    import re
    
    # Create an instance of the Claude API client
    client = anthropic.Anthropic()
    
    # Set the default model
    DEFAULT_MODEL="claude-haiku-4-5-20251001"
    
    def classify_support_request(request, actual_intent):
        # Define the prompt for the classification task
        classification_prompt = f"""You will be acting as a customer support ticket classification system. 
            ...
            ...The reasoning should be enclosed in <reasoning> tags and the intent in <intent> tags. Return only the reasoning and the intent.
            """
    
        message = client.messages.create(
            model=DEFAULT_MODEL,
            max_tokens=500,
            temperature=0,
            messages=[{"role": "user", "content": classification_prompt}],
        )
        usage = message.usage  # Get the usage statistics for the API call for how many input and output tokens were used.
        reasoning_and_intent = message.content[0].text
    
        # Use Python's regular expressions library to extract `reasoning`.
        reasoning_match = re.search(
            r"<reasoning>(.*?)</reasoning>", reasoning_and_intent, re.DOTALL
        )
        reasoning = reasoning_match.group(1).strip() if reasoning_match else ""
    
        # Similarly, also extract the `intent`.
        intent_match = re.search(r"<intent>(.*?)</intent>", reasoning_and_intent, re.DOTALL)
        intent = intent_match.group(1).strip() if intent_match else ""
    
          # Check if the model's prediction is correct.
        correct = actual_intent.strip() == intent.strip()
    
        # Return the reasoning, intent, correct, and usage.
        return reasoning, intent, correct, usage

    让我们分解所做的编辑:

    • 我们将测试用例中的 actual_intent 添加到 classify_support_request 方法中,并设置了比较以评估 Claude 的意图分类是否与我们的标准意图分类匹配。
    • 我们提取了 API 调用的使用统计信息,以根据使用的输入和输出 token 计算成本。

    运行评估

    正确的评估需要明确的阈值和基准来确定什么是好的结果。上面的脚本将为我们提供准确率、响应时间和每次分类成本的运行时值,但我们仍然需要明确建立的阈值。例如:

    • 准确率: 95%(100 次测试中)
    • 每次分类成本: 与当前路由方法相比平均降低 50%(100 次测试中)

    拥有这些阈值使您能够快速轻松地大规模判断,并以客观的经验主义方式确定哪种方法最适合您,以及可能需要做出哪些更改以更好地满足您的需求。


    提升性能

    在复杂场景中,除了标准的提示工程技术和防护栏实施策略之外,考虑额外的策略来提升性能可能会有所帮助。以下是一些常见场景:

    对于 20 个以上意图类别的情况使用分类层级结构

    随着类别数量的增长,所需示例的数量也会扩大,可能使提示变得笨重。作为替代方案,您可以考虑使用混合分类器实现层级分类系统。

    1. 将您的意图组织成分类树结构。
    2. 在树的每个层级创建一系列分类器,实现级联路由方法。

    例如,您可能有一个顶层分类器,将工单大致分为"技术问题"、"账单问题"和"一般咨询"。然后每个类别可以有自己的子分类器来进一步细化分类。

    • 优点 - 更高的精细度和准确性: 您可以为每个父路径创建不同的提示,允许更有针对性和上下文特定的分类。这可以提高准确性并更细致地处理客户请求。

    • 缺点 - 增加延迟: 请注意,多个分类器可能导致延迟增加,我们建议使用我们最快的模型 Haiku 来实施此方法。

    使用向量数据库和相似性搜索检索来处理高度可变的工单

    尽管提供示例是提高性能最有效的方式,但如果支持请求高度可变,很难在单个提示中包含足够的示例。

    在这种情况下,您可以使用向量数据库从示例数据集中进行相似性搜索,并为给定查询检索最相关的示例。

    这种方法在我们的分类指南中有详细说明,已被证明可以将性能从 71% 的准确率提高到 93% 的准确率。

    专门处理预期的边缘情况

    以下是 Claude 可能错误分类工单的一些场景(可能还有其他特定于您情况的场景)。在这些场景中,考虑在提示中提供明确的指令或示例,说明 Claude 应如何处理边缘情况:


    将 Claude 集成到您更大的支持工作流中

    正确的集成需要您就基于 Claude 的工单路由脚本如何融入更大的工单路由系统架构做出一些决策。有两种方式可以实现:

    • 推送式: 您使用的支持工单系统(例如 Zendesk)通过向您的路由服务发送 webhook 事件来触发您的代码,然后分类意图并进行路由。
      • 这种方法更具 Web 可扩展性,但需要您暴露一个公共端点。
    • 拉取式: 您的代码根据给定的计划拉取最新工单,并在拉取时进行路由。
      • 这种方法更容易实现,但当拉取频率过高时可能会对支持工单系统进行不必要的调用,或者当拉取频率过低时可能过于缓慢。

    对于这两种方法,您都需要将脚本包装在一个服务中。方法的选择取决于您的支持工单系统提供的 API。


    分类指南

    访问我们的分类指南,获取更多示例代码和详细的评估指导。

    Claude Console

    在 Claude Console 上开始构建和评估您的工作流。

    Was this page helpful?

    • 确定是否使用 Claude 进行工单路由
    • 构建和部署您的 LLM 支持工作流
    • 选择合适的 Claude 模型
    • 对于 20 个以上意图类别的情况使用分类层级结构
    • 将 Claude 集成到您更大的支持工作流中