Loading...
    • Developer Guide
    • API Reference
    • MCP
    • Resources
    • Release Notes
    Search...
    ⌘K

    Resources

    overviewGlossarySystem Prompts

    Use cases

    OverviewTicket routingCustomer support agentContent moderationLegal summarization

    Prompt Library

    Prompt LibraryCosmic KeystrokesCorporate clairvoyantWebsite wizardExcel formula expertGoogle apps scripterPython bug busterTime travel consultantStorytelling sidekickCite your sourcesSQL sorcererDream interpreterPun-ditCulinary creatorPortmanteau poetHal the humorous helperLaTeX legendMood colorizerGit gudSimile savantEthical dilemma navigatorMeeting scribeIdiom illuminatorCode consultantFunction fabricatorNeologism creatorCSV converterEmoji encoderProse polisherPerspectives pondererTrivia generatorMindfulness mentorSecond-grade simplifierVR fitness innovatorPII purifierMemo maestroCareer coachGrading guruTongue twisterInterview question crafterGrammar genieRiddle me thisCode clarifierAlien anthropologistData organizerBrand builderEfficiency estimatorReview classifierDirection decoderMotivational museEmail extractorMaster moderatorLesson plannerSocratic sageAlliteration alchemistFuturistic fashion advisorPolyglot superpowersProduct naming proPhilosophical musingsSpreadsheet sorcererSci-fi scenario simulatorAdaptive editorBabel's broadcastsTweet tone detectorAirport code analyst
    Console
    Prompt Library

    Efficiency estimator

    Calculate the time complexity of functions and algorithms.

    Copy this prompt into our developer Console to try it for yourself!

    Content
    SystemYour task is to analyze the provided function or algorithm and calculate its time complexity using Big O notation. Explain your reasoning step by step, describing how you arrived at the final time complexity. Consider the worst-case scenario when determining the time complexity. If the function or algorithm contains multiple steps or nested loops, provide the time complexity for each step and then give the overall time complexity for the entire function or algorithm. Assume any built-in functions or operations used have a time complexity of O(1) unless otherwise specified.
    Userdef example_function(n): for i in range(n): print(i) for j in range(n): for k in range(n): print(j, k)

    Example output

    To analyze the time complexity of the given function example_function(n), we'll break it down into steps and consider the worst-case scenario.

    Step 1: Analyzing the first loop

    for i in range(n):
       print(i)
    

    This loop iterates n times and performs a constant-time operation (print(i)) in each iteration. Therefore, the time complexity of this step is O(n).

    Step 2: Analyzing the nested loops

    for j in range(n):
        for k in range(n):
            print(j, k)
    

    The outer loop iterates n times, and for each iteration, the inner loop also iterates n times. In each iteration of the inner loop, a constant-time operation (print(j, k)) is performed. Therefore, the time complexity of the nested loops is O(n * n) = O(n^2).

    Step 3: Combining the time complexities
    The function example_function(n) consists of two steps: the first loop and the nested loops. The overall time complexity is the sum of the time complexities of each step.

    Time complexity of the first loop: O(n)
    Time complexity of the nested loops: O(n^2)

    To determine the overall time complexity, we consider the dominant term, which is the term with the highest order of growth. In this case, O(n^2) dominates O(n).

    Therefore, the overall time complexity of the function example_function(n) is O(n^2).

    In the worst-case scenario, when n is large, the nested loops will dominate the execution time, and the function will have a quadratic time complexity.


    API request

    import anthropic
    
    client = anthropic.Anthropic(
        # defaults to os.environ.get("ANTHROPIC_API_KEY")
        api_key="my_api_key",
    )
    message = client.messages.create(
        model="claude-sonnet-4-5",
        max_tokens=1000,
        temperature=0,
        system="Your task is to analyze the provided function or algorithm and calculate its time complexity using Big O notation. Explain your reasoning step by step, describing how you arrived at the final time complexity. Consider the worst-case scenario when determining the time complexity. If the function or algorithm contains multiple steps or nested loops, provide the time complexity for each step and then give the overall time complexity for the entire function or algorithm. Assume any built-in functions or operations used have a time complexity of O(1) unless otherwise specified.",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "def example_function(n):\n    for i in range(n):\n        print(i)\n\n    for j in range(n):\n        for k in range(n):\n            print(j, k)"
                    }
                ]
            }
        ]
    )
    print(message.content)
    
    • Example output
    • API request
    © 2025 ANTHROPIC PBC

    Products

    • Claude
    • Claude Code
    • Max plan
    • Team plan
    • Enterprise plan
    • Download app
    • Pricing
    • Log in

    Features

    • Claude and Slack
    • Claude in Excel

    Models

    • Opus
    • Sonnet
    • Haiku

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Claude Developer Platform

    • Overview
    • Developer docs
    • Pricing
    • Amazon Bedrock
    • Google Cloud’s Vertex AI
    • Console login

    Learn

    • Blog
    • Catalog
    • Courses
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Help and security

    • Availability
    • Status
    • Support center

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy

    Products

    • Claude
    • Claude Code
    • Max plan
    • Team plan
    • Enterprise plan
    • Download app
    • Pricing
    • Log in

    Features

    • Claude and Slack
    • Claude in Excel

    Models

    • Opus
    • Sonnet
    • Haiku

    Solutions

    • AI agents
    • Code modernization
    • Coding
    • Customer support
    • Education
    • Financial services
    • Government
    • Life sciences

    Claude Developer Platform

    • Overview
    • Developer docs
    • Pricing
    • Amazon Bedrock
    • Google Cloud’s Vertex AI
    • Console login

    Learn

    • Blog
    • Catalog
    • Courses
    • Connectors
    • Customer stories
    • Engineering at Anthropic
    • Events
    • Powered by Claude
    • Service partners
    • Startups program

    Company

    • Anthropic
    • Careers
    • Economic Futures
    • Research
    • News
    • Responsible Scaling Policy
    • Security and compliance
    • Transparency

    Help and security

    • Availability
    • Status
    • Support center

    Terms and policies

    • Privacy policy
    • Responsible disclosure policy
    • Terms of service: Commercial
    • Terms of service: Consumer
    • Usage policy
    © 2025 ANTHROPIC PBC